Download Berkeley City College Precalculus - Math 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Berkeley City College
Homework 6 Due:_________________
Precalculus - Math 1 - Chapter 10
Polar Coordinates and Complex Numbers
Name___________________________________
Match the point in polar coordinates with either A, B, C, or D on the graph.
π
1) -3, 3
1)
5
4
A
3
B
2
1
-5
-4
-3
-2
-1
1
2
3
4
5 r
-1
-2
D
C
-3
-4
-5
Objective: (9.1) Plot Points Using Polar Coordinates
2) 3, - 5π
3
2)
5
4
A
3
B
2
1
-5
-4
-3
-2
-1
1
2
3
4
5 r
-1
-2
D
-3
C
-4
-5
Objective: (9.1) Plot Points Using Polar Coordinates
Instructor: K. Pernell
1
Plot the point given in polar coordinates.
3) (-2, 45°)
3)
5
4
3
2
1
-5
-4
-3
-2
-1
1
2
3
4
5 r
-1
-2
-3
-4
-5
Objective: (9.1) Plot Points Using Polar Coordinates
4) (2, 360°)
4)
5
4
3
2
1
-5
-4
-3
-2
-1
1
2
3
4
5 r
-1
-2
-3
-4
-5
Objective: (9.1) Plot Points Using Polar Coordinates
2
Solve the problem.
5) Plot the point 4, (a) r > 0, (b) r < 0, (c) r > 0
5π
and find other polar coordinates (r, θ) of the point for which:
6
5)
-2π ≤ θ < 0
0 ≤ θ < 2π
2π ≤ θ < 4π
5
4
3
2
1
-5
-4
-3
-2
-1
1
2
3
4
5 r
-1
-2
-3
-4
-5
Objective: (9.1) Plot Points Using Polar Coordinates
The polar coordinates of a point are given. Find the rectangular coordinates of the point.
2π
6) 7, 3
6)
Objective: (9.1) Convert from Polar Coordinates to Rectangular Coordinates
7) 5, - 4π
3
7)
Objective: (9.1) Convert from Polar Coordinates to Rectangular Coordinates
8) (-3, -135°)
8)
Objective: (9.1) Convert from Polar Coordinates to Rectangular Coordinates
3
The rectangular coordinates of a point are given. Find polar coordinates for the point.
9) (0, -8)
9)
Objective: (9.1) Convert from Rectangular Coordinates to Polar Coordinates
10) (- 3, -1)
10)
Objective: (9.1) Convert from Rectangular Coordinates to Polar Coordinates
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).
11) x2 + y 2 - 4x = 0
11)
Objective: (9.1) Transform Equations between Polar and Rectangular Forms
12) xy = 1
12)
Objective: (9.1) Transform Equations between Polar and Rectangular Forms
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).
13) r = 1 + 2 sin θ
13)
Objective: (9.1) Transform Equations between Polar and Rectangular Forms
4
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.
14)
14) r = 5
6
5
4
3
2
1
-6 -5 -4 -3 -2 -1
-1
-2
-3
-4
-5
-6
1 2 3 4 5 6
r
Objective: (9.2) Identify and Graph Polar Equations by Converting to Rectangular Equations
15) r = 2 cos θ
15)
6
5
4
3
2
1
-6 -5 -4 -3 -2 -1
-1
-2
-3
-4
-5
-6
1 2 3 4 5 6 r
Objective: (9.2) Identify and Graph Polar Equations by Converting to Rectangular Equations
5
16) r sin θ = 5
16)
6
5
4
3
2
1
-6 -5 -4 -3 -2 -1-1
-2
-3
-4
-5
-6
1 2 3 4 5 6 r
Objective: (9.2) Identify and Graph Polar Equations by Converting to Rectangular Equations
Match the graph to one of the polar equations.
17)
17)
5
4
3
2
1
-5 -4 -3 -2 -1
-1
1
2
3
4
5r
-2
-3
-4
-5
A) θ = π
3
B) r = -
π
3
C) θ = -
π
3
D) r = Objective: (9.2) Identify and Graph Polar Equations by Converting to Rectangular Equations
6
π
3
Plot the complex number in the complex plane.
18) 6 + 5i
6
18)
i
4
2
-6
-4
-2
2
4
6 R
-2
-4
-6
Objective: (9.3) Plot Points in the Complex Plane
19) -8 + 7i
19)
10
i
5
-10
-5
5
R
-5
-10
Objective: (9.3) Plot Points in the Complex Plane
Write the complex number in rectangular form.
π
π
20) 8 cos + i sin 6
6
20)
Objective: (9.3) Plot Points in the Complex Plane
7
21) 4(cos 300° + i sin 300°)
21)
Objective: (9.3) Plot Points in the Complex Plane
22) 9(cos 180° + i sin 180°)
22)
Objective: (9.3) Plot Points in the Complex Plane
Write the complex number in polar form . Express the argument in degrees, rounded to the nearest tenth, if necessary.
23) 2 + 2i
23)
Objective: (9.3) Convert a Complex Number between Rectangular Form and Polar Form
24) -6
24)
Objective: (9.3) Convert a Complex Number between Rectangular Form and Polar Form
25) -12 + 16i
25)
Objective: (9.3) Convert a Complex Number between Rectangular Form and Polar Form
Find zw or z
as specified. Leave your answer in polar form.
w
26) z = 5(cos 35° + i sin 35°)
w = 2(cos 40° + i sin 40°)
Find zw.
26)
Objective: (9.3) Find Products and Quotients of Complex Numbers in Polar Form
8
27) z = 10(cos 30° + i sin 30°)
w = 5(cos 10° + i sin 10°)
z
Find .
w
27)
Objective: (9.3) Find Products and Quotients of Complex Numbers in Polar Form
Write the expression in the standard form a + bi.
28) 2(cos 15° + i sin 15°) 3
28)
Objective: (9.3) Use De Moivreʹs Theorem
29) 2(cos 75° + i sin 75°) 3
29)
Objective: (9.3) Use De Moivreʹs Theorem
30)
2 cos 3π
3π
+ i sin 4
4
4
30)
Objective: (9.3) Use De Moivreʹs Theorem
31)
3 cos 5π
5π
+ i sin 6
6
4
31)
Objective: (9.3) Use De Moivreʹs Theorem
32) (1 + i)20
32)
Objective: (9.3) Use De Moivreʹs Theorem
9
Find all the complex roots. Leave your answers in polar form with the argument in degrees.
33) The complex fourth roots of -16
Objective: (9.3) Find Complex Roots
10
33)
Answer Key
Testname: 13SPR_CH10_MATH1_HW_6
1) D
2) B
3)
5
4
3
2
1
-5
-4
-3
-2
-1
1
2
3
4
5 r
1
2
3
4
5 r
-1
-2
-3
-4
-5
4)
5
4
3
2
1
-5
-4
-3
-2
-1
-1
-2
-3
-4
-5
11
Answer Key
Testname: 13SPR_CH10_MATH1_HW_6
5)
5
4
3
2
1
-5
-4
-3
-2
-1
1
2
3
4
5 r
-1
-2
-3
-4
-5
(a) 4, - (b) -4, (c)
4, 7π
6
11π
6
17π
6
7 7 3
6) - , 2 2
5 5 3
7) - , 2 2
8)
3 2 3 2
, 2
2
9) 8, 10) 2, -
π
2
5π
6
11) r = 4 cos θ
12) r2 sin 2θ = 2
13) x2 + y2 = x2 + y2 + 2y
12
Answer Key
Testname: 13SPR_CH10_MATH1_HW_6
14)
6
5
4
3
2
1
-6 -5 -4 -3 -2 -1
-1
-2
-3
-4
-5
-6
1 2 3 4 5 6
r
x2 + y2 = 25; circle, radius 5, center at pole
15)
6
5
4
3
2
1
-6 -5 -4 -3 -2 -1
-1
-2
-3
-4
-5
-6
1 2 3 4 5 6 r
(x - 1)2 + y2 = 1; circle, radius 1,
center at (1, 0) in rectangular coordinates
16)
6
5
4
3
2
1
-5 -4 -3 -2 -1-1
-2
-3
-4
-5
-6
1 2 3 4 5 6r
y = 5; horizontal line 5 units above the pole
17) A
13
Answer Key
Testname: 13SPR_CH10_MATH1_HW_6
18)
6
i
4
2
-6
-4
-2
2
4
6 R
-2
-4
-6
19)
10
i
5
-10
-5
5
R
-5
-10
20) 4 3 + 4i
21) 2 - 2 3i
22) -9
23) 2 2(cos 45° + i sin 45°)
24) 6(cos 180° + i sin 180°)
25) 20(cos 126.9° + i sin 126.9°)
26) 10(cos 75° + i sin 75°)
27) 2(cos 20° + i sin 20°)
28) 4 2 + 4 2i
29) -4 2 - 4 2i
30) -4
9 9 3
31) - - i
2
2
32) -1024
33) 2(cos 45° + i sin 45°), 2(cos 135° + i sin 135°), 2(cos 225° + i sin 225°), 16(cos 315° + i sin 315°)
14
Related documents