Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Berkeley City College Homework 6 Due:_________________ Precalculus - Math 1 - Chapter 10 Polar Coordinates and Complex Numbers Name___________________________________ Match the point in polar coordinates with either A, B, C, or D on the graph. π 1) -3, 3 1) 5 4 A 3 B 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 r -1 -2 D C -3 -4 -5 Objective: (9.1) Plot Points Using Polar Coordinates 2) 3, - 5π 3 2) 5 4 A 3 B 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 r -1 -2 D -3 C -4 -5 Objective: (9.1) Plot Points Using Polar Coordinates Instructor: K. Pernell 1 Plot the point given in polar coordinates. 3) (-2, 45°) 3) 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 r -1 -2 -3 -4 -5 Objective: (9.1) Plot Points Using Polar Coordinates 4) (2, 360°) 4) 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 r -1 -2 -3 -4 -5 Objective: (9.1) Plot Points Using Polar Coordinates 2 Solve the problem. 5) Plot the point 4, (a) r > 0, (b) r < 0, (c) r > 0 5π and find other polar coordinates (r, θ) of the point for which: 6 5) -2π ≤ θ < 0 0 ≤ θ < 2π 2π ≤ θ < 4π 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 r -1 -2 -3 -4 -5 Objective: (9.1) Plot Points Using Polar Coordinates The polar coordinates of a point are given. Find the rectangular coordinates of the point. 2π 6) 7, 3 6) Objective: (9.1) Convert from Polar Coordinates to Rectangular Coordinates 7) 5, - 4π 3 7) Objective: (9.1) Convert from Polar Coordinates to Rectangular Coordinates 8) (-3, -135°) 8) Objective: (9.1) Convert from Polar Coordinates to Rectangular Coordinates 3 The rectangular coordinates of a point are given. Find polar coordinates for the point. 9) (0, -8) 9) Objective: (9.1) Convert from Rectangular Coordinates to Polar Coordinates 10) (- 3, -1) 10) Objective: (9.1) Convert from Rectangular Coordinates to Polar Coordinates The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ). 11) x2 + y 2 - 4x = 0 11) Objective: (9.1) Transform Equations between Polar and Rectangular Forms 12) xy = 1 12) Objective: (9.1) Transform Equations between Polar and Rectangular Forms The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y). 13) r = 1 + 2 sin θ 13) Objective: (9.1) Transform Equations between Polar and Rectangular Forms 4 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. 14) 14) r = 5 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6 1 2 3 4 5 6 r Objective: (9.2) Identify and Graph Polar Equations by Converting to Rectangular Equations 15) r = 2 cos θ 15) 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6 1 2 3 4 5 6 r Objective: (9.2) Identify and Graph Polar Equations by Converting to Rectangular Equations 5 16) r sin θ = 5 16) 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 1 2 3 4 5 6 r Objective: (9.2) Identify and Graph Polar Equations by Converting to Rectangular Equations Match the graph to one of the polar equations. 17) 17) 5 4 3 2 1 -5 -4 -3 -2 -1 -1 1 2 3 4 5r -2 -3 -4 -5 A) θ = π 3 B) r = - π 3 C) θ = - π 3 D) r = Objective: (9.2) Identify and Graph Polar Equations by Converting to Rectangular Equations 6 π 3 Plot the complex number in the complex plane. 18) 6 + 5i 6 18) i 4 2 -6 -4 -2 2 4 6 R -2 -4 -6 Objective: (9.3) Plot Points in the Complex Plane 19) -8 + 7i 19) 10 i 5 -10 -5 5 R -5 -10 Objective: (9.3) Plot Points in the Complex Plane Write the complex number in rectangular form. π π 20) 8 cos + i sin 6 6 20) Objective: (9.3) Plot Points in the Complex Plane 7 21) 4(cos 300° + i sin 300°) 21) Objective: (9.3) Plot Points in the Complex Plane 22) 9(cos 180° + i sin 180°) 22) Objective: (9.3) Plot Points in the Complex Plane Write the complex number in polar form . Express the argument in degrees, rounded to the nearest tenth, if necessary. 23) 2 + 2i 23) Objective: (9.3) Convert a Complex Number between Rectangular Form and Polar Form 24) -6 24) Objective: (9.3) Convert a Complex Number between Rectangular Form and Polar Form 25) -12 + 16i 25) Objective: (9.3) Convert a Complex Number between Rectangular Form and Polar Form Find zw or z as specified. Leave your answer in polar form. w 26) z = 5(cos 35° + i sin 35°) w = 2(cos 40° + i sin 40°) Find zw. 26) Objective: (9.3) Find Products and Quotients of Complex Numbers in Polar Form 8 27) z = 10(cos 30° + i sin 30°) w = 5(cos 10° + i sin 10°) z Find . w 27) Objective: (9.3) Find Products and Quotients of Complex Numbers in Polar Form Write the expression in the standard form a + bi. 28) 2(cos 15° + i sin 15°) 3 28) Objective: (9.3) Use De Moivreʹs Theorem 29) 2(cos 75° + i sin 75°) 3 29) Objective: (9.3) Use De Moivreʹs Theorem 30) 2 cos 3π 3π + i sin 4 4 4 30) Objective: (9.3) Use De Moivreʹs Theorem 31) 3 cos 5π 5π + i sin 6 6 4 31) Objective: (9.3) Use De Moivreʹs Theorem 32) (1 + i)20 32) Objective: (9.3) Use De Moivreʹs Theorem 9 Find all the complex roots. Leave your answers in polar form with the argument in degrees. 33) The complex fourth roots of -16 Objective: (9.3) Find Complex Roots 10 33) Answer Key Testname: 13SPR_CH10_MATH1_HW_6 1) D 2) B 3) 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 r 1 2 3 4 5 r -1 -2 -3 -4 -5 4) 5 4 3 2 1 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 11 Answer Key Testname: 13SPR_CH10_MATH1_HW_6 5) 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 r -1 -2 -3 -4 -5 (a) 4, - (b) -4, (c) 4, 7π 6 11π 6 17π 6 7 7 3 6) - , 2 2 5 5 3 7) - , 2 2 8) 3 2 3 2 , 2 2 9) 8, 10) 2, - π 2 5π 6 11) r = 4 cos θ 12) r2 sin 2θ = 2 13) x2 + y2 = x2 + y2 + 2y 12 Answer Key Testname: 13SPR_CH10_MATH1_HW_6 14) 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6 1 2 3 4 5 6 r x2 + y2 = 25; circle, radius 5, center at pole 15) 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6 1 2 3 4 5 6 r (x - 1)2 + y2 = 1; circle, radius 1, center at (1, 0) in rectangular coordinates 16) 6 5 4 3 2 1 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 1 2 3 4 5 6r y = 5; horizontal line 5 units above the pole 17) A 13 Answer Key Testname: 13SPR_CH10_MATH1_HW_6 18) 6 i 4 2 -6 -4 -2 2 4 6 R -2 -4 -6 19) 10 i 5 -10 -5 5 R -5 -10 20) 4 3 + 4i 21) 2 - 2 3i 22) -9 23) 2 2(cos 45° + i sin 45°) 24) 6(cos 180° + i sin 180°) 25) 20(cos 126.9° + i sin 126.9°) 26) 10(cos 75° + i sin 75°) 27) 2(cos 20° + i sin 20°) 28) 4 2 + 4 2i 29) -4 2 - 4 2i 30) -4 9 9 3 31) - - i 2 2 32) -1024 33) 2(cos 45° + i sin 45°), 2(cos 135° + i sin 135°), 2(cos 225° + i sin 225°), 16(cos 315° + i sin 315°) 14