Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
INTEGRATION RULES TRIGONOMETRIC INTEGRALS Z Z Z Z (Af (x) + Bg (x)) dx = A f (x) dx + B g (x) dx Z f 0 (g (x)) g 0 (x) dx = f (g (x)) + C Z Z U (x) dV (x) = U (x) V (x) − a Z V (x) dU (x) f 0 (x) dx = f (b) − f (a) b d dx Z x f (t) dt = f (x) a Z Z Z Z Z Z Z Z Z Z Z Z Z xr dx = Z Z Z Z ELEMENTARY INTEGRALS Z Z 1 xr+1 + C if r 6= −1 r+1 dx = ln |x| + C x ex dx = ex + C sin x dx = − cos x + C cos x dx = sin x + C sec2 x dx = tan x + C csc2 x dx = − cot x + C sec x tan x dx = sec x + C csc x cot x dx = − csc x + C tan x dx = ln |sec x| + C cot x dx = ln |sin x| + C sec x dx = ln |sec x + tan x| + C csc x dx = ln |csc x − cot x| + C dx x √ = sin−1 + C (a > 0, |x| < a) a a2 − x2 Z 1 x dx = tan−1 + C (a > 0) a2 + x2 a a ¯ ¯ Z ¯x + a¯ dx 1 ¯ ¯ + C (a > 0) ln = a2 − x2 2a ¯ x − a ¯ Z ¯x¯ 1 dx ¯ ¯ √ = sec−1 ¯ ¯ + C (a > 0, |x| > a) 2 2 a a x x −a Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z sin2 x dx = 1 x − sin 2x + C 2 4 cos2 x dx = x 1 + sin 2x + C 2 4 tan2 x dx = tan x − x + C cot2 x dx = − cot x − x + C sec3 x dx = 1 1 sec x tan x + ln |sec x + tan x| + C 2 2 1 1 csc3 x dx = − csc x cot x + ln |csc x − cot x| + C 2 2 sin ax sin bx dx = cos ax cos bx dx = sin (a + b) x sin (a − b) x − + C if a2 6= b2 2 (a − b) 2 (a + b) sin (a + b) x sin (a − b) x + + C if a2 6= b2 2 (a − b) 2 (a + b) cos (a − b) x cos (a + b) x − + C if a2 6= b2 2 (a − b) 2 (a + b) Z 1 n−1 sinn−2 x dx sinn x dx = − sinn−1 x cos x + n n Z 1 n−1 cosn−2 x dx cosn x dx = cosn−1 x sin x + n n Z 1 tann−1 x − tann−2 x dx if n 6= 1 tann x dx = n−1 Z −1 cotn x dx = cotn−1 x − cotn−2 x dx if n 6= 1 n−1 Z 1 n−2 secn−2 x tan x + secn−2 x dx if n 6= 1 secn x dx = n−1 n−1 Z −1 n−2 cscn−2 x cot x + cscn−2 x dx if n 6= 1 cscn x dx = n−1 n−1 Z sinn−1 x cosm+1 x n−1 sinn−2 x cosm x dx if n 6= −m sinn x cosm x dx = − + n+m n+m Z m−1 sinn+1 x cosm−1 x sinn x cosm x dx = + sinn x cosm−2 x dx if m 6= −n n+m n+m sin ax cos bx dx = − x sin x dx = sin x − x cos x + C x cos x dx = cos x + x sin x + C Z xn sin x dx = −xn cos x + n xn−1 cos x dx xn cos x dx = xn sin x − n Z xn−1 sin x dx TRIGONOMETRIC IDENTITIES sin2 x + cos2 x = 1 sin (−x) = − sin x cos(−x) = cos x sec2 x = 1 + tan2 x sin (π − x) = sin x cos(π − x) = − cos x csc2 x = 1 + cot2 x sin sin (x ± y) = sin x cos y ± cos x sin y cos (x ± y) = cos x cos y ∓ sin x sin y sin 2x = 2 sin x cos x sin2 x = ³π 2 ´ − x = cos x 1 − cos 2x 2 QUADRATIC FORMULA x= −B ± ³π 2 ´ − x = sin x tan (x ± y) = cos2 x = cos 2x = 2 cos2 x − 1 = 1 − 2 sin2 x Ax2 + Bx + C = 0 cos √ B 2 − 4AC 2A 2 tan x ± tan y 1 ∓ tan x tan y 1 + cos 2 2 INTEGRALS INVOLVING (If Z Z Z Z Z Z Z Z Z Z √ x2 ± a2 (a > 0) INTEGRALS INVOLVING √ x2 − a2 , assume |x| > a > 0.) ¯ √ √ x√ 2 a2 ¯¯ ¯ ln ¯x + x2 ± a2 ¯ + C x2 ± a2 dx = x ± a2 ± 2 2 ¯ ¯ √ dx ¯ ¯ √ = ln ¯x + x2 ± a2 ¯ + C 2 2 x ±a ¯ ¯ √ ¯ a + √x2 + a2 ¯ √ x2 + a2 ¯ ¯ 2 2 dx = x + a − a ln ¯ ¯+C ¯ ¯ x x √ √ 2 2 2 2 √ x −a x −a dx = x2 − a2 − a tan−1 +C x a ¯ √ √ ¢√ x¡ 2 a4 ¯¯ ¯ 2x ± a2 ln ¯x + x2 ± a2 ¯ + C x2 ± a2 − x2 x2 ± a2 dx = 8 8 ¯ √ x2 x√ 2 a2 ¯¯ ¯ √ dx = x ± a2 ∓ ln ¯x + x2 ± a2 ¯ + C 2 2 2 2 x ±a √ √ ¯ ¯ √ x2 ± a2 x2 ± a2 ¯ ¯ + ln ¯x + x2 ± a2 ¯ + C dx = − 2 x x √ x2 ± a2 dx +C √ =∓ 2 2 2 a2 x x x ±a dx (x2 ± a2 )3/2 ¡ x2 ± a2 ¢3/2 = ±x √ +C a2 x2 ± a2 dx = ¯ √ ¢√ x¡ 2 3a4 ¯¯ ¯ x2 ± a2 + 2x ± 5a2 ln ¯x + x2 ± a2 ¯ + C 8 8 √ a2 − x2 (a > 0, |x| < a) Z √ x√ 2 a2 x sin−1 + C a2 − x2 dx = a − x2 + 2 2¯ a ¯ Z √ 2 ¯ a + √a2 − x2 ¯ √ a − x2 ¯ ¯ dx = a2 − x2 − a ln ¯ ¯+C ¯ ¯ x x Z x x√ 2 a2 x2 √ dx = − a − x2 + sin−1 + C 2 2 a a2 − x2 Z √ ¢√ x x¡ 2 a4 a2 − x2 + x2 a2 − x2 dx = 2x − a2 sin−1 + C 8 8 a √ Z a2 − x2 dx +C √ =− a2 x x2 a2 − x2 √ √ Z a2 − x2 a2 − x2 x dx = − − sin−1 + C 2 x x a ¯ ¯ √ Z 1 ¯¯ a + a2 − x2 ¯¯ dx √ = − ln ¯ ¯+C ¯ a ¯ x x a2 − x2 Z x dx = √ +C a2 a2 − x2 (a2 − x2 )3/2 Z ¢3/2 ¢√ ¡ 2 x x¡ 2 3a4 a − x2 dx = a2 − x2 + 5a − 2x2 sin−1 + C 8 8 a INTEGRALS OF INVERSE TRIGONOMETRIC FUNCTIONS EXPONENTIAL AND LOGARITHMIC INTEGRALS Z Z xex dx = (x − 1) ex + C Z ln x dx = x ln x − x + C Z sin−1 x dx = x sin−1 x + √ 1 − x2 + C ¢ 1 ¡ ln 1 + x2 + C 2 Z ¯ ¯ √ ¯ ¯ sec−1 x dx = x sec−1 x − ln ¯x + x2 − 1¯ + C Z tan−1 x dx = x tan−1 x − (x > 1) Z Z xn ex dx = xn ex − n xn−1 ex dx xn+1 xn+1 ln x − + C, (n 6= −1) n+1 (n + 1)2 Z Z xn+1 m xn (ln x)m−1 dx xn (ln x)m dx = (ln x)m − n+1 n+1 Z Z xn ln x dx = (n 6= −1) eax sin bxdx = eax cos bxdx = eax a2 + b2 eax a2 + b2 (a sin bx − b cos bx) + C (a cos bx + b sin bx) + C C :\a ll\crss\IntTa b le-S ta stn a .te x 3