Download Integration Tables

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
INTEGRATION RULES
TRIGONOMETRIC INTEGRALS
Z
Z
Z
Z
(Af (x) + Bg (x)) dx = A f (x) dx + B g (x) dx
Z
f 0 (g (x)) g 0 (x) dx = f (g (x)) + C
Z
Z
U (x) dV (x) = U (x) V (x) −
a
Z
V (x) dU (x)
f 0 (x) dx = f (b) − f (a)
b
d
dx
Z
x
f (t) dt = f (x)
a
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
xr dx =
Z
Z
Z
Z
ELEMENTARY INTEGRALS
Z
Z
1
xr+1 + C if r 6= −1
r+1
dx
= ln |x| + C
x
ex dx = ex + C
sin x dx = − cos x + C
cos x dx = sin x + C
sec2 x dx = tan x + C
csc2 x dx = − cot x + C
sec x tan x dx = sec x + C
csc x cot x dx = − csc x + C
tan x dx = ln |sec x| + C
cot x dx = ln |sin x| + C
sec x dx = ln |sec x + tan x| + C
csc x dx = ln |csc x − cot x| + C
dx
x
√
= sin−1 + C (a > 0, |x| < a)
a
a2 − x2
Z
1
x
dx
= tan−1 + C (a > 0)
a2 + x2
a
a
¯
¯
Z
¯x + a¯
dx
1
¯
¯ + C (a > 0)
ln
=
a2 − x2
2a ¯ x − a ¯
Z
¯x¯
1
dx
¯ ¯
√
= sec−1 ¯ ¯ + C (a > 0, |x| > a)
2
2
a
a
x x −a
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
sin2 x dx =
1
x
− sin 2x + C
2
4
cos2 x dx =
x
1
+ sin 2x + C
2
4
tan2 x dx = tan x − x + C
cot2 x dx = − cot x − x + C
sec3 x dx =
1
1
sec x tan x + ln |sec x + tan x| + C
2
2
1
1
csc3 x dx = − csc x cot x + ln |csc x − cot x| + C
2
2
sin ax sin bx dx =
cos ax cos bx dx =
sin (a + b) x
sin (a − b) x
−
+ C if a2 6= b2
2 (a − b)
2 (a + b)
sin (a + b) x
sin (a − b) x
+
+ C if a2 6= b2
2 (a − b)
2 (a + b)
cos (a − b) x
cos (a + b) x
−
+ C if a2 6= b2
2 (a − b)
2 (a + b)
Z
1
n−1
sinn−2 x dx
sinn x dx = − sinn−1 x cos x +
n
n
Z
1
n−1
cosn−2 x dx
cosn x dx = cosn−1 x sin x +
n
n
Z
1
tann−1 x − tann−2 x dx if n 6= 1
tann x dx =
n−1
Z
−1
cotn x dx =
cotn−1 x − cotn−2 x dx if n 6= 1
n−1
Z
1
n−2
secn−2 x tan x +
secn−2 x dx if n 6= 1
secn x dx =
n−1
n−1
Z
−1
n−2
cscn−2 x cot x +
cscn−2 x dx if n 6= 1
cscn x dx =
n−1
n−1
Z
sinn−1 x cosm+1 x
n−1
sinn−2 x cosm x dx if n 6= −m
sinn x cosm x dx = −
+
n+m
n+m
Z
m−1
sinn+1 x cosm−1 x
sinn x cosm x dx =
+
sinn x cosm−2 x dx if m 6= −n
n+m
n+m
sin ax cos bx dx = −
x sin x dx = sin x − x cos x + C
x cos x dx = cos x + x sin x + C
Z
xn sin x dx = −xn cos x + n xn−1 cos x dx
xn cos x dx = xn sin x − n
Z
xn−1 sin x dx
TRIGONOMETRIC IDENTITIES
sin2 x + cos2 x = 1
sin (−x) = − sin x
cos(−x) = cos x
sec2 x = 1 + tan2 x
sin (π − x) = sin x
cos(π − x) = − cos x
csc2 x = 1 + cot2 x
sin
sin (x ± y) = sin x cos y ± cos x sin y
cos (x ± y) = cos x cos y ∓ sin x sin y
sin 2x = 2 sin x cos x
sin2 x =
³π
2
´
− x = cos x
1 − cos 2x
2
QUADRATIC FORMULA
x=
−B ±
³π
2
´
− x = sin x
tan (x ± y) =
cos2 x =
cos 2x = 2 cos2 x − 1 = 1 − 2 sin2 x
Ax2 + Bx + C = 0
cos
√
B 2 − 4AC
2A
2
tan x ± tan y
1 ∓ tan x tan y
1 + cos 2
2
INTEGRALS INVOLVING
(If
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
√
x2 ± a2
(a > 0)
INTEGRALS INVOLVING
√
x2 − a2 , assume |x| > a > 0.)
¯
√
√
x√ 2
a2 ¯¯
¯
ln ¯x + x2 ± a2 ¯ + C
x2 ± a2 dx =
x ± a2 ±
2
2
¯
¯
√
dx
¯
¯
√
= ln ¯x + x2 ± a2 ¯ + C
2
2
x ±a
¯
¯
√
¯ a + √x2 + a2 ¯
√
x2 + a2
¯
¯
2
2
dx = x + a − a ln ¯
¯+C
¯
¯
x
x
√
√
2
2
2
2
√
x −a
x −a
dx = x2 − a2 − a tan−1
+C
x
a
¯
√
√
¢√
x¡ 2
a4 ¯¯
¯
2x ± a2
ln ¯x + x2 ± a2 ¯ + C
x2 ± a2 −
x2 x2 ± a2 dx =
8
8
¯
√
x2
x√ 2
a2 ¯¯
¯
√
dx =
x ± a2 ∓
ln ¯x + x2 ± a2 ¯ + C
2
2
2
2
x ±a
√
√
¯
¯
√
x2 ± a2
x2 ± a2
¯
¯
+ ln ¯x + x2 ± a2 ¯ + C
dx
=
−
2
x
x
√
x2 ± a2
dx
+C
√
=∓
2
2
2
a2 x
x x ±a
dx
(x2 ± a2 )3/2
¡
x2 ± a2
¢3/2
=
±x
√
+C
a2 x2 ± a2
dx =
¯
√
¢√
x¡ 2
3a4 ¯¯
¯
x2 ± a2 +
2x ± 5a2
ln ¯x + x2 ± a2 ¯ + C
8
8
√
a2 − x2
(a > 0, |x| < a)
Z
√
x√ 2
a2
x
sin−1 + C
a2 − x2 dx =
a − x2 +
2
2¯
a
¯
Z √ 2
¯ a + √a2 − x2 ¯
√
a − x2
¯
¯
dx = a2 − x2 − a ln ¯
¯+C
¯
¯
x
x
Z
x
x√ 2
a2
x2
√
dx = −
a − x2 +
sin−1 + C
2
2
a
a2 − x2
Z
√
¢√
x
x¡ 2
a4
a2 − x2 +
x2 a2 − x2 dx =
2x − a2
sin−1 + C
8
8
a
√
Z
a2 − x2
dx
+C
√
=−
a2 x
x2 a2 − x2
√
√
Z
a2 − x2
a2 − x2
x
dx = −
− sin−1 + C
2
x
x
a
¯
¯
√
Z
1 ¯¯ a + a2 − x2 ¯¯
dx
√
= − ln ¯
¯+C
¯
a ¯
x
x a2 − x2
Z
x
dx
=
√
+C
a2 a2 − x2
(a2 − x2 )3/2
Z
¢3/2
¢√
¡ 2
x
x¡ 2
3a4
a − x2
dx =
a2 − x2 +
5a − 2x2
sin−1 + C
8
8
a
INTEGRALS OF INVERSE TRIGONOMETRIC FUNCTIONS
EXPONENTIAL AND LOGARITHMIC INTEGRALS
Z
Z
xex dx = (x − 1) ex + C
Z
ln x dx = x ln x − x + C
Z
sin−1 x dx = x sin−1 x +
√
1 − x2 + C
¢
1 ¡
ln 1 + x2 + C
2
Z
¯
¯
√
¯
¯
sec−1 x dx = x sec−1 x − ln ¯x + x2 − 1¯ + C
Z
tan−1 x dx = x tan−1 x −
(x > 1)
Z
Z
xn ex dx = xn ex − n xn−1 ex dx
xn+1
xn+1
ln x −
+ C,
(n 6= −1)
n+1
(n + 1)2
Z
Z
xn+1
m
xn (ln x)m−1 dx
xn (ln x)m dx =
(ln x)m −
n+1
n+1
Z
Z
xn ln x dx =
(n 6= −1)
eax sin bxdx =
eax cos bxdx =
eax
a2 + b2
eax
a2 + b2
(a sin bx − b cos bx) + C
(a cos bx + b sin bx) + C
C :\a ll\crss\IntTa b le-S ta stn a .te x
3
Related documents