Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
The domain of f is x : x ≤ log2 3 . (Note: log2 3 ≈ 1.58). Fall 2004 Math 151 4 Inverse Functions 4.4 Derivatives of Logarithmic Functions c Mon, 25/Oct 2004, Art Belmonte • The requirements for the domain of f 0 are almost the same, with the additional provision that the expression under the square root sign not be zero, lest we divide by zero. Therefore, the domain of f 0 is x : x < log2 3 . 269/10 Summary Let y = ln (sec x + tan x). Find y 0 and y 00 . Four derivatives Solution As always, these may be combined with the chain rule. Via the chain rule, we have 1 d (ln x) = dx x 1 d loga x = dx x ln a 1 d (ln |x|) = dx x d a x = a x ln a dx y0 = sec x tan x + sec2 x (sec x + tan x) sec x = = sec x. sec x + tan x (sec x + tan x) In turn, y 00 = sec x tan x. 269/20 Logarithmic Differentiation r Differentiate G(u) = ln This technique makes it easier to differentiate a function that involves combinations of products, powers, and/or quotients. 1. Take the natural logarithm of both sides of y = f (x). Apply the properties of logarithms when needed. Solution 2. Implicitly differentiate with respect to x. Rewrite G as G(u) = ln 3. Solve for d y/d x, replacing y by f (x) in the final result. differentiate. Hand Examples G 0 (u) = 269/6 √ G 0 (u) = 3 − 2x . Find f 0 (x) and state the domains of f and 3u + 2 3u − 2 1/2 ! . Use log props, then 1 (ln (3u + 2) − ln (3u − 2)) 2 3 1 3 − [Stop; this is fine.] 2 3u + 2 3u − 2 1 9u − 6 − 9u − 6 2 9u 2 − 4 6 [Or simplify to taste!] 4 − 9u 2 G(u) = Let f (x) = f 0. 3u + 2 . 3u − 2 G 0 (u) = Solution 269/23 • Write f as f (x) = (3 − 2x )1/2 . Then Differentiate y = −1/2 1 2 x−1 ln 2 3 − 2x . −2 x ln 2 = − √ f (x) = 2 3 − 2x 0 • For the domain of f , we need the expression under the square root sign to be nonnegative. 3 − 2x 3 ln 3 ln 3 ln 2 log2 3 Solution The quotient rule gives ≥ 0 ≥ 2x ≥ x ln 2 ≥ x ≥ x ln x . 1 + x2 1 dy dx = dy dx = 1 + x2 1 − (ln x) (2x) x 2 1 + x2 1 + x 2 − 2x 2 ln x 2 . x 1 + x2 269/29 Solution Compute the derivative of f (t) = π −t . Once again, apply logarithmic differentiation. y ln x 1 y 0 ln x + y · x x y0 ln x − y Solution This is the exponential function whose base is the constant π. ln π Accordingly, f 0 (t) = π −t ln π (−1) = − t via the chain rule. π = x ln y = 1 · ln y + x · = ln y − y0 = y0 = 269/30 Find the derivative of g(x) = 1.6 x + x 1.6 . 1 0 y y y x y ln y − x x ln x − y x y ln y − y 2 x y ln x − x 2 Solution 269/63 We have the sum of an exponential function and a polynomial. So dg/d x = 1.6 x ln 1.6 + 1.6x 0.6 . Use logarithmic differentiation to find the derivative of p ex x 5 + 2 y= 2 . (x + 1)4 x 2 + 3 269/42 Solution Compute the derivative of y = (sin x)cos x . We have Solution Unlike the preceding problem, this is neither an exponential function nor a polynomial. (Both the base and the exponent vary.) Accordingly, use logarithmic differentiation. ln y = x+ 1 dy y dx = 1+ dy dx = 1. Take the natural logarithm of y = (sin x)cos x . ln y = cos x · ln (sin x) 1 2 ln x 5 + 2 − 4 ln (x + 1) − 2 ln x 2 + 3 5x 4 2 (2x) 4 − − 2 5 x +1 x +3 2 x +2 ! p ex x 5 + 2 4x 5x 4 4 − − . 2 1 + x + 1 x2 + 3 2 x5 + 2 (x + 1)4 x 2 + 3 269/65 If g = f −1 is the inverse function of f (x) = 2x + ln x, find g 0 (2). 2. Implicitly differentiate with respect to x. cos x 1 dy = − sin x · ln (sin x) + cos x · y dx sin x Solution By inspection f (1) = 2, whence g(2) = f −1 (2) = 1. Therefore, 3. Solve for d y/d x, replacing y by (sin x)cos x in the final result. g 0 (2) = dy = (sin x)cos x (cos x cot x − sin x ln (sin x)) dx 1 1 1 = 0 = 1 f 0 (g(2)) f (1) 2+ x 269/54 269/67 Find y 0 if x y = y x . Use the definition of derivative to prove that lim = 1 . 3 x=1 ln (1 + x) = 1. x x→0 2 Solution %-------------------------------------------------% Stewart 269/42 % syms x y = sin(x) ˆ cos(x); pretty(y) d 1 ln (1 + x) − ln 1 = = = 1. lim (ln(1 + x)) x −0 dx 1 + x x=0 x→0 x=0 cos(x) sin(x) yp = diff(y,x); pretty(yp) MATLAB Examples / 2\ cos(x) | cos(x) | sin(x) |-sin(x) log(sin(x)) + -------| \ sin(x) / s269x25 Differentiate y = ln x 3 − x 2 . Plot y and y 0 on the same figure. % echo off; diary off Solution s269x45 We have y 0 = 3x 2 − 2x 3x − 2 . = 3 2 x(x − 1) x −x Let f (x) = x . Find f 0 (e). Illustrate. ln x Stewart 269/25 6 Solution function derivative 4 Via diff and subs, MATLAB reveals that f 0 (e) = 0. That is, the tangent line at x = e is horizontal. 2 0 −2 Stewart 269/45 2.95 −4 −6 2.9 −8 −1 0 x 1 2.85 2 y −10 −2 2.8 %-------------------------------------------------% Stewart 269/25 % x = linspace(-2, 2, 201); % Yes, 201 so we hit x = 0, 1. y = log(abs(x.ˆ3 - x.ˆ2)); yp = (3.*x - 2) ./ (x .* (x - 1)); plot(x,y, x,yp,’r-.’); grid on legend(’function’, ’derivative’, ’Location’, ’NorthWest’) axis([-2 2 -10 6]) xlabel(’x’); title(’Stewart 269/25’) % Painting the asymptotes x = 0 and x = 1. % 1. Apply electronic white-out. % 2. Now overspray. hold on plot([0 0], [-10 6], ’w’) plot([1 1], [-10 6], ’w’) plot([0 0], [-10 6], ’g--’) plot([1 1], [-10 6], ’g--’) % 2.75 2.7 2 2.5 3 x 3.5 4 %-------------------------------------------------% Stewart 269/45 % syms x f = x / log(x); fp = diff(f,x); pretty(fp) 1 1 ------ - ------log(x) 2 log(x) echo off; diary off fp at e = subs(fp, x, exp(1)) fp at e = 0 x = linspace(2, 4); f = eval(vectorize(f)); plot(x,f); grid on hold on; e = exp(1); plot([2 4], [e e], ’r--’) plot(e, e, ’go’, ’MarkerFaceColor’, ’g’, ... ’MarkerSize’, 7) xlabel(’x’); ylabel(’y’) title(’Stewart 269/45’) % s269x42 [269/42 revisited] Compute the derivative of y = (sin x)cos x . Solution We use diff to verify the derivative we computed by hand. echo off; diary off 3 s269x47 Stewart 269/49 0.6 function f(x) = ln(ln(x)) tangent line y = x/e − 1 Let f (x) = sin x + ln x. Compute f 0 (x). Plot f and f 0 . 0.4 Solution Now f 0 (x) = cos x + y 0.2 1 . Here is a plot. x 0 Stewart 269/47 −0.2 6 function f(x) = sin(x) + ln(x) derivative f’(x) = cos(x) + 1/x 5 −0.4 2 2.5 3 x 4 3.5 4 y 3 %-------------------------------------------------% Stewart 269/49 % e = exp(1); x = linspace(2, 4); f = log(log(x)); TL = x ./ e - 1; plot(x,f, x,TL,’r--’); grid on; hold on plot(e, 0, ’go’, ’MarkerFaceColor’, ’g’, ... ’MarkerSize’, 7) legend(’function f(x) = ln(ln(x))’, ... ’tangent line y = x/e - 1’, ’Location’, ’NorthWest’) xlabel(’x’); ylabel(’y’) title(’Stewart 269/49’) % 2 1 0 −1 −2 0 2 4 6 x 8 10 12 %-------------------------------------------------% Stewart 269/47 % syms x f = sin(x) + log(x); fp = diff(f,x); pretty(fp) echo off; diary off s269x56 cos(x) + 1/x x = linspace(0.2, 12); f = eval(vectorize(f)); fp = eval(vectorize(fp)); plot(x,f, x,fp,’r--’) legend(’function f(x) = sin(x) + ln(x)’, ... ’derivative f’’(x) = cos(x) + 1/x’) grid on; hold on plot([0 12], [0 0], ’k’, ’LineWidth’, 1) xlabel(’x’); ylabel(’y’) title(’Stewart 269/47’) % Let y = x 8 ln x. Find d9 y , the ninth derivative of y. dx9 Solution An optional parameter to diff renders the needful in one line! echo off; diary off %-------------------------------------------------% Stewart 269/56 % syms x y = xˆ8 * log(x); yp = diff(y,x,9); pretty(yp) s269x49 Find an equation of the tangent line to the curve y = f (x) = ln (ln x) at (x, y) = (e, 0). 40320 ----x Solution % echo off; diary off • The slope of the tangent line is 1 1 1 = m = f (e) = ln x x x=e e 0 • Therefore, an equation of the tangent line is y−0 = y = 1 (x − e) e 1 x − 1. e 4