Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
5 Techniques of Anti-differentiation 5.1 Differential Notation 1 Calculate the differential of the following functions by using the definition dy = y 0 (x)dx. Express the result in terms of the product between y 0 (x) and the differential of x, dx. For example, given y(x) = 3x + sin(2x), its differential is dy = y 0 (x)dx = (3 + 2 cos(2x))dx. (a) f (x) = ex 2 (d) f (x) = arcsin(x) (g) y = x6 + 2x4 − 2x √ (b) f (x) = (x + 1)2 (c) f (x) = (e) f (x) = x2 + 3x + 1 (h) y = (x − 2)2 (x + 1)5 (f) f (x) = cos(2x) (i) y = x/(x + 3) x Solution 2 2 (a) d(ex ) = 2xex dx (b) d((x + 1)2 ) = 2(x + 1) dx √ (c) d( x) = (1/2)x−1/2 dx 1 dx 1 − x2 (f) d(cos(2x)) = −2 sin(2x) dx (e) d(x2 + 3x + 1) = (2x + 3) dx (g) dy = (6x5 + 8x3 − 2) dx (h) dy = (2(x − 2)(x + 1)5 + 5(x − 2)2 (x + 1)4 ) dx (i) dy = ((1(x + 3) − x)/(x + 3)2 ) dx = (3/(x + 3)2 ) dx 5.2 (d) d(arcsin(x)) = √ Differential Notation 2 Given the differential of a function y in terms of the product between its derivative y 0 (x) and the differential of x, (dx), express the same differential in terms of the the differential of y itself, i.e., dy. Then, use the result combined with the fundamental theorem of calculus to calculate the corresponding indefinite integrals. For example, if we know that the differential of a function y(x) is given by (3 + 2 sin(2x))dx =?, (Or equivalently, Z (3 + 2 sin(2x))dx =?) we now need to figure out that y(x) = 3x − cos(2x) and express the differential given above in terms of the differential of y itself (3 + 2 sin(2x))dx = d(3x − cos(2x)). 1 Using this result and the fundamental theorem of calculus, we can solve the following Z (3 + 2 sin(2x))dx = Z d(3x − cos(2x)) = 3x − cos(2x) + C. (Those marked by a star are a little bit more difficult since they involve composite functions.) R 3 R 3/2 (a) x3 dx =?, x dx =? (b) x3/2 dx =?, x dx =? √ √ R R (d) xdx =?, R xdx =? (c) x13 dx =?, R x13 dx =? 1 1 √ √ dx =? (f) e−2x dx =?, e−2x dx =? (e) x dx =?, x R R 1 1 (g) (x + 1)2 dx =?, (x + 1)2 dx =? (h) x+3) dx =? 2 dx =?, x+3)2 R R 2 2 (i) cos(2x)dx =?, cos(2x)dx =? (j) sec (x)dx =?, sec (x)dx =? R 1 R 1 1 1 dx =? (l) 1+x2 dx =?, dx =? (k) x dx =?, x 1+x2 R R ∗ x2 x2 ∗ 2 3 (m) 2xe dx =?, R 2xe dx =? (n) 3x cos(x )dx R=?, 3x2 cos(x3 )dx =? 2x 2x 2x 2x (o)∗ 1+x dx =? (p)∗ 1+x dx =? 2 dx =?, 4 dx =?, 1+x2 1+x4 Solution 4 (a) x3 dx = d x4 , R x3 dx = R 4 d x4 = x4 4 5/2 + C. R R −2 −2 1 −1 dx = d x−2 , x13 dx = d x−2 = 2x 2 + C. x3 √ √ R R 1 1 1/2 √ dx = 2dx , √x dx = 2 d x = 2 x + C. x R (x+1)3 3 (x+1)3 (g) (x + 1)2 dx = d (x+1) , d = + C. 3 3 3 R (i) cos(2x)dx = d sin(2x) , cos(2x)dx = sin(2x) + C. 2 R 21 1 (k) x dx = d ln x, x dx = ln x + C. x2 x2 (c) (e) (m) 2xe dx = de , (n) 3x2 cos(x3 )dx = d sin(x3 ), 2x 2 (o) 1+x 2 dx = d ln(1 + x ), 2 dx 2x −1 2 (x ), (p) 1+x 4 dx = 1+(x2 )2 = d tan 5.3 R R R (a) Evaluate the following indefinite integrals using the substitution method: √ Z Z Z Z √ cos( x) 4 √ sin(3x) dx, dx, x3 x4 + 1 dx, dx. x 1 + 2x (b) Calculate the following definite integrals using the substitution rule: 5 0 √ ( 3 + 2x) dx, Z π/4 0 sin(4t) dt, Solution 2 5/2 dx 1 −1 −1 (h) (x+3) = x+3 + C. 2 dx = d( x+3 ), (x+3)2 R (j) sec2 (x)dx = d tan(x),R sec2 (x)dx = tan(x) + C 1 1 −1 −1 (l) 1+x x, 1+x x + C. 2 dx = d tan 2 dx = tan R R x2 x2 x2 2xe dx = de R= e + C. R 3x2 cos(x3 )dx = d sin(x3 ) + sin(x3 ) + C. R 2x R d ln(1 + x2 ) = ln(1 + x2 ) + C. 2 dx = 1+x R 2x R dx = d tan−1 (x2 ) = tan−1 (x2 ) + C. 1+x4 Substitution 1 Z 5/2 (b) x3/2 dx = d 2x5 , x3/2 dx = d 2x5 = 2x5 + C R √ R√ 3/2 3/2 3/2 xdx = d 2x3 = 2x3 + C. (d) xdx = d 2x3 , R R −2x −2x −2x (f) e−2x dx = d e−2 , e−2x dx = d e−2 = e−2 + C. Z 0 √ π x cos(x2 ) dx. (a) (i) Set u = 3x. Then du = 3 dx, and (ii) Set u = √ Z 1 sin(3x) dx = 3 Z sin u du = − cos u − cos 3x = + constant. 3 3 x, then du = (1/2)x−1/2 dx, and √ Z Z √ cos x √ dx = 2 cos u du = 2 sin u = 2 sin x + constant. x (iii) Set u = x4 + 1, then du = 4x3 dx and Z √ 1 Z 1/2 1 u3/2 (x4 + 1)3/2 4 u du = x x + 1 dx = = + constant. 4 4 3/2 6 3 (iv) Set u = 1 + 2x, then du = 2 dx and Z 4 dx = 1 + 2x Z 2 du = 2 ln |u| = 2 ln |1 + 2x| + constant. u (b) (i) Set u = 3 + 2x, then du = 2 dx, and the limits of integration change from 0 < x < 5 to 3 < u < 13. (u(0) = 3 + 0 = 3; u(5) = 3 + 10 = 13) Z 5 0 Z √ 1 2u3/2 1 13 1/2 u du = 3 + 2x dx = 2 3 2 3 " # 13 3 u3/2 13 = = 13.89. 3 3 " # (ii) Set u = 4t, then du = 4 dt, and the limits of integration change from 0 < t < π/4 to 0 < u < π. π Z π/4 Z 1 π 1 1 sin(4t) dt = sin u du = [− cos u] = . 4 0 4 2 o 0 √ (iii) Set u = x2 , du = 2x dx. Then the limits of integration change from 0 < x < π to 0 < u < π. π Z √π Z 1 π 1 2 x cos(x ) dx = cos u du = [sin u] = 0. 2 0 2 0 0 5.4 Substitution 2 Compute the following integrals using substitution. 3 1 dy (a) 1 1 + y2 Z 1 dx (d) x ln(x) p Z (g) Z (j) Z 0 5 cos(x) sin (x) dx sec2 (x) q 2 + tan(x) 2 3 6 x (x + 1) dx 1 dy 1−y Z √ (h) 3x + 1 dx (e) x2 dx 1 − x3 1 Z (m) (b) Z dx Z 3 (k) dx 4 + 5x Z 2 dx (n) 4 + x2 Z √ ex 1 + 2ex dx (c) Z (f) Z (i) Z √ (l) Z cot(θ) dθ S 1 k1 dn, k1 , k2 > 0 k2 − n x dx 4 + x2 Solution p (a) Z (b) Z Z 1 1 dy = arctan(y)|p1 = arctan(p) − arctan(1). 1 + y2 x2 (x3 + 1)6 dx Let u = x3 + 1, du = 3x2 dx. Then I = Z x2 (x3 + 1)6 dx = u6 (du/3) = (1/3)[u7 /7] = (1/21)(x3 + 1)7 + C Z Z Z √ √ (c) ex 1 + 2ex dx Let u = 1 + 2ex , du = 2ex dx. I = ex 1 + 2ex dx = u1/2 (du/2) = (1/2) Z u1/2 du = (1/2)u3/2 /(3/2) = (1/3)(1 + 2ex )3/2 + C 1 1 dx u = ln x, du = (1/x) dx. I = dx = (1/u)du = ln |u| = x ln(x) x ln(x) ln | ln |x|| + C Z Z Z 1 1 1 dy Substitute u = 1 − y, hence du = −dy, and dy = − du = − ln |u| = (e) 1−y 1−y u − ln |1 − y| + C. S Z S k1 k2 − 1 (f) dn = −k1 ln |k2 − n| = −k1 [ln |k2 − S| − ln |k2 − 1|] = k1 ln | |. k2 − S 1 k2 − n 1 Z 1 Z Z x2 3 2 (g) dx u = 1−x , du = −3x dx. Then I = (1/u)(du/−3) = (−1/3) (1/u) du = 0 1 − x3 (d) Z Z Z 1 −(1/3) ln |u| = −(1/3) ln |1 − x3 | . This integral does not exist since the integrand blows up at x = 1. (h) Z 0 √ 3x + 1 dx u = 3x + 1, du = 3dx. Then I = (2/9)(3x + 1)3/2 + C x √ dx (i) 4 + x2 √ 4 + x2 + C. Z Z u1/2 (du/3) = 1 2 · · u3/2 = 3 3 1 Z −1/2 1 u1/2 u = 4 + x , du = 2x dx. Then I = = u1/2 = u du = 2 2 (1/2) 2 4 (j) Z (k) Z (l) Z cos(x) sin5 (x) dx 3 dx 4 + 5x cot(θ) dθ = u = sin x, du = cos x dx. Then I = u = 4 + 5x, du = 5dx. I = 3 Z cos(θ) dθ sin(θ) Z Z (1/u)(du/5) = u5 du = u6 /6 = sin6 x/6 + C 3 3 ln |u| = ln |4 + 5x| + C 5 5 Substitute u = sin(θ), hence du = cos(θ) dθ. Then Z cot(θ)dθ = du = ln |u| + C = ln | sin(θ)| + C. u Z Z Z sec2 (x) 1/2 2 q (m) dx u = 2 + tan(x), du = sec x dx. So I = (1/u )du = u−1/2 du = 2 + tan(x) 1/2 √ u = 2 u = 2(2 + tan x)1/2 + C. 1/2 Z Z 2 2 2 2 dx Substitute u = x/2. Then x = 4u , du = dx/2, and dx = (n) 2 4+x 4 + x2 Z Z 4 du du = = arctan(u) + C = arctan(x/2) + C. 2 4(1 + u ) 1 + u2 Z 5.5 Trigonometric Substitution 1 The integral R sin(x) cos(x)dx can be done in several ways: (a) using the substitution u = sin(x) (or u = cos(x)) OR (b) by first using the trigonometric identity sin(2x) = 2 sin(x) cos(x) and then integrating. Show that the two answers are equivalent. (Hint: you will find that this is a good opportunity to review trigonometric identities.) Solution (a) u = sin(x), du = cos(x)dx, so I = Z sin x cos x dx = (b) sin(2x) = 2 sin x cos x (trig identity). So I = u = 2x. Then I = (1/2) Z Z Z udu = u2 /2 = 1 2 sin x + C. 2 sin(x) cos(x)dx = (1/2) Z sin(2x)dx. Let sin(u)(du/2) = (−1/4) cos(2x) + C 0 . Using the identities cos(2x) = cos2 x − sin2 x and cos2 x = 1 − sin2 x, we can show that the two results are equivalent: I = (−1/4)(1 − 2 sin2 x) + C 0 = sin2 x/2 + (C 0 − 1/4). Let C = (C 0 − 1/4) to get the result. 5.6 Trigonometric substitution 2 R √ The integral 01 1 − x2 dx can be done by making the substitution x = sin(u) and dx = cos(u)du. This is called a trigonometric substitution. (a) Show that this reduces the integral to R cos2 (u) du. 5 (b) Now use the identity cos2 (u) = integrate. 1 + cos(2u) to re-express the integral in a simpler form. Then 2 (c) Explain why the answer is the same as the area of 1/4 of a circle of radius 1. Solution (a) Let x = sin(u), dx = cos(u)du. Then I = so that I = Z cos u cos u du = (b) Using the identity we get Z cos2 u du. Z q 1 − sin2 u(cos u du). But 1 − sin2 u = cos2 u, Z I = (1/2) [1 + cos(2u)]du = (1/2)[u + (1/2) sin(2u)] = (1/2)[u + sin(u) cos(u)]. √ √ Now we need to express in terms of x, so we use x = sin u, so also 1 − x2 = 1 − sin2 u = cos u to rewrite the above as √ I = (1/2)[sin−1 x + x 1 − x2 ]|10 = (1/2)(sin−1 1 − sin−1 0) = (1/2)(π/2 − 0) = π/4 (c) The function y = f (x) = π/4. 5.7 √ 1 − x2 , 0 < x < 1 forms 1/4 of a circle of radius 1, thus area is Partial Fractions 1 Practice with Integration: Compute the following integrals. Use factoring and/or completing the square and partial fractions, or some other technique if necessary. Z (a) (c) Z 1 dx x2 − x − 20 (b) −1 dx 2 x + 4x + 14 (d) Z Z 3 dx x2 + 6x + 9 x2 2 dx − 6x + 8 Solution dx dx = . Use partial fractions to get (a) I = 2 x − x − 20 (x − 5)(x − 4) Z 1 1 x − 5 1 1 I= dx = ln + C. − 9 x−5 x+4 9 x + 4 Z Z 3 3 (b) dx = dx = −3(x + 3)−1 + C. 2 x + 6x + 9 (x + 3)2 Z Z 6 Z √ −1 −1 dx = dx. Now make the substitution x + 2 = (c) I = 10 tan θ x2 + 4x√+ 14 (x +√ 2)2 + 10 Z sec2 θ − 10 Z −1 Z sec2 θ θ − 10 sec2 θ √ √ +C = dθ = dθ = dθ = − to get I = 2 2 10 tan! θ + 10 10 tan θ + 1 10 sec2 θ 10 1 x+2 − √ tan−1 √ + C. 10 10 Z Z Z x − 4 1 2 1 2 + C. dx = ln dx = = − (d) x2 − 6x + 8 (x − 4)(x − 2) x−4 x−2 x − 2 Z 5.8 Partial Fraction 2 The integrals shown below may look very similar, but in fact they lead to quite different results: (a) Z dx 2 a + x2 (b) Z a2 dx − x2 Show that (a) can be reduced to an inverse tangent type integral by a bit of algebraic rearrangement and a substitution of the form u = x/a. Show that (b) can be integrated by factoring the expression a2 − x2 and using the method of partial fractions. Solution Z (a) I = Z dx = 2 a + x2 adu = (1/a) 2 a [1 + u2 ] Z Z a2 [1 dx . Substitute u = x/a, then du = dx/a so I = + (x2 /a2 )] du = (1/a) arctan(u) + C = (1/a) arctan(x/a) + C. [1 + u2 ] dx 1 dx = . Using partial fractions, we get: = a2 − x2 (a + x)(a − x) (a + x)(a − x) Z (1/2a) 1/2a 1 1 1 + so that I = + dx = −(1/2a) ln |a − x| + (1/2a) ln |a + (a + x) (a − x) 2a (a + x) (a − x) a+x | + C. x| + C = (1/2a) ln | a−x (b) I = 5.9 Z Z Integration by Parts 1 Use integration by parts to show that Z xn ex dx = xn ex − n Z xn−1 ex dx Solution With u = xn and dv = ex dx, we get du = nxn−1 dx and v = ex , giving R n xn−1 ex dx. 7 R xn ex dx = xn ex − 5.10 Integration by Parts 2 First make a substitution and then use integration by parts to evaluate the following integrals: (a) Z √ sin( x) dx (b) Z 4 √ x e 1 Z dx √ π (c) √ 3 π/2 2 x cos(x ) dx (d) Z 2 x5 ex dx Solution Z Z √ √ 1 (a) u = x and du = √ dx so sin( x)dx = 2u sin(u)du. Integration by parts: f (u) = 2u 2 x Z and g 0 (u) = sin(u). Therefore f 0 (u) = 2 and g(u) = − cos(u) and 2u sin(u)du = −2u cos(u) − Z √ √ √ −2 cos(u)du = −2u cos(u) + 2 sin(u) + C = −2 x cos( x) + 2 sin( x) + C. (b) u = 4 √ x Z Z1 e 2 dx = (c)√ u = x Z Z 2 1 2ueu du. With f (u) = 2u and g 0 (u) = eu , we get f 0 (u) = 2 and g(u) = eu , and 2ueu du = 2ueu |21 − 1 π √ π/2 √ √ 1 √ dx. The limits of integration change to 1 and 4 = 1 and 2. 2 x √ x and du = 2 Z 2 1 2eu du = 4e2 − 2e − 2eu |21 = 2e2 . → du = 2x dx. x3 cos(x2 )dx = Z π π/2 (u/2) cos(u)du. With f (u) = u/2 and g 0 (u) = cos(u), f 0 (u) = 1/2 and g(u) = sin(u), and we get −π 1 cos(u) π |π/2 = − . 2 4 2 2 (d) u = x , du = 2x dx: u g(u) = e , and we get Z The limits of integration change to π/2 and π, giving us: Z Z 5 x2 x e π π/2 (u/2) cos(u)du = = (1/2) 2 u 2 u Z (u/2) sin(u)|ππ/2 Z ueu du. For 0 u u Z x5 ex = (1/2) R π/2 −π sin(u) du = + 2 4 ueu du we again use integration by parts with f (u) = u, f (u) = 1, g (u) = e , and g(u) = e to get: ueu − eu + C. Altogether, we get π u2 eu du. With f (u) = u2 and g 0 (u) = eu , f 0 (u) = 2u, u e du = u e − 2 0 − Z 2 2 Z Compute the following integrals. 8 u u ue du = ue − Z eu du = u2 eu du = (1/2)(u2 eu − 2(ueu − eu )) + D = (1/2)eu (u2 − 2u + 2) + D = (1/2)ex (x4 − 2x2 + 2) + D. 5.11 Z 3 + 4x + 6 Z 2 dx (b) (x + 1)(x + 2) (a) (e) Z Z x2 T 0 te−2t dt (c) Z (f) Z 1 dx 2 x + 6x + 8 π 0 x x sin( ) dx 2 (d) Z (g) Z p 1 1 dy 1 − y2 x2 ln(x) dx Solution (a) Z Z 3 dx = x2 + 4x + 6 Z 3 dx. With the substitution u = x + 2, this becomes (x + 2)2 + 2 3 du. We solve this indefinite integral using algebra and substitution: u2 + 2 3 3Z 1 3Z du √ du = du = 2 2 u +2 2 (u /2) + 1 2 1 + (u/ 2)2 √ √ We now substitute a = u/ 2, 2 da = du, giving us: √ Z ! √ da 3 3 3 x+2 3 2 = √ arctan(a) = √ arctan(u/ 2) = √ arctan √ 2 1 + a2 2 2 2 2 Z 2 2 A B dx Partial fractions: = + provided (x + 1)(x + 2) (x + 1)(x + 2) (x + 1) (x + 2) A(x + 2) + B(x + 1) = 2, for any x = −1 get A = 2. ! x. Plug in x = −2, get B = −2 plug in Z x + 1 2 2 + C. dx = 2 ln |x + 1| − 2 ln |x + 2| + C = 2 ln − Thus I = (x + 1) (x + 2) x + 2 (b) Z 1 dx Factor denominator: x2 + 6x + 8 = (x + 4)(x + 2). Thus I = + 6x + 8 Z A B + dx. Use Partial fractions. A(x + 2) + B(x + 4) = 1. Plug in x = −2, −4 to (x + 4) (x + 2) Z (−1/2) (1/2) find that B = 1/2, A = −(1/2). Integrate I = + dx to get I = (−1/2) ln |x + (x + 4) (x + 2) 1 x + 2 + C. 4| + (1/2) ln |x + 2| + C = ln 2 x + 4 ! 1 1 1 1 = (1/2) + (d) Note that = by partial fractions. There1 − y2 (1 − y)(1 + y) 1−y 1+y Z Z Z 1 1 1 fore, dy = (1/2)( dy + dy) = (1/2)(− ln |1 − y| + ln |1 + y| + C) = 2 1 − y 1 − y 1 + y 1 + y + C 0 . Using this, we can see that the definite integral considered does not ex(1/2) ln 1 − y Z p 1 dy existed, then this integral would be equal to ist. First note that, if the integral 1 1 − y2 (c) Z x2 9 Z p 1 1 dy (r, p > 1). But using the result obtained, we see that dy = the limit lim r→1 r 1 − y 2 r 1 − y2 ! 1 + r 1 + p − ln = (1/2)(ln |1 + p| − ln |1 − p| − ln |1 + r| + ln |1 − r|). Since the (1/2) ln 1−p 1 − r Z p 1 limit limr→1 ln |1 − r| does not exist, the definite integral dy doesn’t either. 1 1 − y2 Z (e) Z T 0 Z p te−2t dt T 0 te −2t Integration by parts: u = t, dv = e−2t dt, hence du = dt and v = π Z π 0 Then T −1 −t −2t T dt = e − e−2t dt 2 2 0 0 −T −2T 1 −2T T = e − e 2 4 0 −T −2T 1 −2T 1 = e − e + . 2 4 4 x x sin( ) dx 2 0 v = −2 cos( x2 ). Then (f) Z −1 −2t e . 2 x x sin 2 Z Integration by parts: u = x, dv = sin( x2 ) dx, hence du = dx and dx = = π Z π −2 cos(x/2)dx −2x cos(x/2) − 0 0π 0 + 4 sin(x/2) = 4. 0 (g) Z Z x2 ln |x| dx (Integration by parts: u = ln |x|, du = (1/x) dx and dv = x2 dx, v = x3 /3) x2 ln |x|dx = ln |x|x3 /3 − Z (1/x)(x3 /3)dx = ln |x|x3 /3 − Z (x2 /3) dx = ln |x|x3 /3 − x3 /9 + C. 5.12 Integration drills: (Note: some simplifications in a few of these will make your work much easier.) 10 (1) Z (4) Z (7) Z 2 (2) dx 2 + 3x Z 1 x dx (5) 1 + x2 0 Z 1 (8) √ dx 25 − 4x2 1 ln(x) dx x 2 2t e 1 3t2 Z dt 2 dx 3 + 4x2 (10) Z cos(3x) (1 − sin(3x)) dx (12) Z sec2 (x) (14) Z (16) Z (18) Z (20) Z (22) Z (24) Z (11) Z q (13) Z 2x(1 − sin(2x)) dx (15) x sin(x + 1) dx (17) tan(x) + 1 dx Z Z sec (t) dt 1 dx (x − 5)(x + 1) 1 dx (x + 2)(x + 3) (29) Z x sec2 (x) dx (27) −1 tan (x) dx Solution Z 1 ln(x) dx (1) x ln(x)2 /2 + C. (30) Z √ 1 dx 2 − 3x2 Z 1 (9) x √ dx 9 + x2 (6) cos(2x)(1 − sin(2x)) dx π/2 0 (1 − sin2 (t)) sin(t) dt sec(x) tan(x) dx (Hint : use your trig relations) (x sin2 (x) + x cos2 (x))5 dx (Hint : look caref ully!) (19) Z (23) Z 2x2 3x2 + 1 dx x2 (x2 + 1)2 1 dx (Hint : try f actoring) x2 − 3x + 2 Z x2 sin(3x3 + 1) dx 1 dx (Some algebra, please) + 12x + 18 Z 1 (21) dx (x + 3)(2x − 1) 2 (26) (3) Z Z Z 2 xex dx (25) (28) Z Z 3 dx x2 + 3x + 15 x2 ex dx x cos(x) ex dx With u = ln(x) and du = (1/x) dx, Z Z 1 ln(x)dx = udu = u2 /2 + C = x (2) Let u = 2 + 3x, du = 3 dx, 2 2 dx = 2 + 3x 3 Z Z 1 2 2 du = ln |u| + C = ln |2 + 3x| + C. u 3 3 (3) Let u = 3x3 + 1, du = 9x2 dx. Z 1 x sin(3x + 1) dx = 9 2 3 Z 1 1 sin(u) du = − cos(u) + C = − cos(3x3 + 1) + C. 9 9 11 (4) Let u = 3t2 , du = 6t dt. Then the new limits of integration are 3(1)2 and 3(2)2 , or 3 and 12. Z 2 2t e 1 3t2 1 dt = 3 Z 12 3 1 u=12 1 12 = (e − e3 ). e du = eu 3 u=3 3 u (5) Let u = 1 + x2 , du = 2x dx. The limits of integration change to 1 + 02 = 1 and 1 + 12 = 2. Z 1 0 x 1 dx = 2 1+x 2 (6) I= Let u = q 3 x 2 → du = q 3 2 Z √ dx: Z 2 1 u=2 1 1 1 1 du = ln u = (ln 2 − ln 1) = ln 2. u 2 2 2 u=1 1 Z 1 1 q √ dx = dx. 2 2 − 3x 2 1 − (3/2)x2 s √ Z √ ! 1 1 2 3 6 1 1 √ x + C = √ arcsin x +C I=√ √ du = √ arcsin 2 2 2 2 3 1−u 3 3 (7) Z Let tan u = √2 3 1 √ 3 Z 2 2 dx = 2 3 + 4x 3 x, then sec2 u · du = √2 3 sec2 u 1 du = √ 2 1 + tan u 3 Z Z 1 dx 1 + 43 x2 dx ⇒ dx = √ 2 3 3 2 · sec2 u du ! 1 2x 1 du = √ u + C = √ tan−1 √ + C. 3 3 3 (8) We make the substitution 2x = 5u, 2dx = 5du: Z Z 1 1 2x 1 5/2 √ + C. dx = √ du = sin−1 u + C = sin−1 2 2 2 2 5 25 − 4x 25 − 25u (9) We make the substitution u = 9 + x2 , du = 2xdx: Z √ x dx = 9 + x2 Z √ 1 √ du = u1/2 + C = 9 + x2 + C. 2 u (10) We use the trig identities sin 2θ = 2 sin θ cos θ and cos(2θ) = 1 − 2 sin2 (θ): Z cos(3x) (1 − sin(3x)) dx = = Z Z (cos(3x) − cos(3x) sin(3x)) dx (cos(3x) dx − 12 Z sin(6x) ) dx 2 sin(3x) cos(6x) + +C 3 12 4 sin(3x) + 1 − 2 sin2 (3x) +C = 12 −1 = (sin2 (3x) − 2 sin(3x)) + C 0 6 = (11) We use the trig identity sin 2θ = 2 sin θ cos θ: Z Z cos(2x)(1 − sin(2x)) dx = cos 2x dx − Z cos 2x sin 2x dx sin 2x sin 4x − dx 2 2 sin 2x cos 4x = + + C. 2 8 Z = (12) Let u = tan x + 1, du = sec 2 x dx. Z sec2 (x) q tan(x) + 1 dx = Z √ u du = 2 2 3/2 u + C = tan(x + 1)3/2 + C. 3 3 (13) Let u = cos t, du = − sin t dt. Set new limits of integration with respect to u: t = 0, u = 1. t = π/2, u = 0. Z π/2 0 2 (1 − sin (t)) sin(t) dt = Z π/2 0 2 cos t sin t dt = − Z 0 1 2 u du = (14) Z 2x(1 − sin(2x)) dx = Z 2x dx − = x2 − Z Z Z 1 0 u3 u=1 1 u du = = . 3 u=0 3 2 2x sin 2x dx 2x sin 2x dx This is now done by parts, with u = 2x and dv = sin(2x) dx. Therefore du = 2 dx and v = (−1/2) cos(2x). x2 − Z 2x sin 2x dx = x2 − −x cos(2x) − = x2 + x cos 2x − Z − cos(2x) dx sin 2x + C. 2 (15) We make the substitution u = cos x, du = − sin x dx: Z sec(x) tan(x) dx = Z Z 1 −du 1 sin x dx = + C = sec x + C. = +C = 2 2 cos x u u cos x 13 (16) This is done by parts, with u = x and dv = sin(x + 1) dx. Therefore du = dx and v = − cos(x + 1): Z x sin(x + 1) dx = −x cos(x + 1) + Z cos(x + 1) dx = −x cos(x + 1) + sin(x + 1) + C. (17) Note that sin2 x + cos2 x = 1. Z (x sin2 (x) + x cos2 (x))5 dx = Z h x sin2 (x) + cos2 (x) i5 dx = Z x5 dx = x6 + C. 6 (18) Z (19) Z sec2 (t) dt = tan(t) + C 1 dx = 2 2x + 12x + 18 Z 1 1 dx = − (x + 3)−1 + C. 2 2(x + 3) 2 (20) Partial fractions: Z 1Z 1 dx = (x − 5)(x + 1) 6 1 1 − x−5 x+1 (21) Partial fractions: Z 1 1Z dx = − (x + 3)(2x − 1) 7 (22) Partial fractions: Z (23) Z 1 x − 5 dx = ln + C. 6 x + 1 2 1 1 x + 3 − dx = − ln + C. x + 3 2x − 1 7 2x − 1 1 1 1 = − . (x + 2)(x + 3) x+2 x+3 1 dx = (x + 2)(x + 3) 3x2 + 1 dx = x2 (x2 + 1)2 Z Z 1 dx − x+2 Z 1 dx x+3 x + 2 + C. = ln |x + 2| − ln |x + 3| + C = ln 3x2 + 1 dx = [x(x2 + 1)]2 Z 3x2 + 1 dx. [x3 + x]2 x+3 Let u = x3 + x, du = (3x2 + 1) dx, Z Z 1 1 1 3x2 + 1 + C. dx = du = − + C = − 3 3 2 2 [x + x] u u x +x 14 (24) Partial fractions: Z (25) Z Let u = 4 17 Z √2 51 1 dx = 2 x − 3x + 2 3 dx = 2 x + 3x + 15 x+ 3 2 , du = √2 51 Z Z x − 2 1 1 + C. = ln − x−2 x−1 x − 1 3 x+ 3 2 dx, 2 + 51 4 dx = 3 51 4 Z 1 4 51 x+ 3 2 2 dx. +1 √ Z 4 51 1 dx = du 2 2 3 4 17 2 u +1 + 1 x + 51 2 √ 2 51 tan−1 (u) + C = 17 √ ! 2 51 3 2 −1 √ = x+ + C. tan 17 2 51 1 (26) By parts, with u = x, du = dx, dv = sec2 x dx, and v = tan x: Z x sec2 (x) dx = x tan(x) − Z tan(x) dx = x tan(x) − Z sin(x) dx. cos(x) Use substitution, with u = cos(x) and du = − sin(x) dx. Then the integral becomes x tan(x) + Z du = x tan(x) + ln | cos(x)| + C. u (27) We make the substitution u = x2 , du = 2x dx: Z xe x2 dx = Z 1 u 1 1 2 e du = eu + C = ex + C. 2 2 2 (28) This is done by using parts twice. The first time, u = x2 and dv = ex dx, so that du = 2x dx and v = ex : Z Z 2 x 2 x x e dx = x e − 2xex dx The second time, u = 2x, du = 2 dx, dv = ex dx, and v = ex . 2 x x e − Z x 2 x x 2xe dx = x e − 2xe − Z x 2e dx = x2 ex − 2xex + 2ex + C. 15 (29) This is done by parts, with u = tan−1 (x) and dv = dx. Then du = Z −1 −1 tan (x) dx = x tan (x) − Z 1 1+x2 dx, and v = x. x dx 1 + x2 Now use substitution, letting u = 1 + x2 . Then du = 2x dx. x tan−1 (x) − Z x 1 Z du 1 −1 −1 dx = x tan (x) − = x tan (x) − ln(1 + x2 ) + C. 2 1+x 2 u 2 (30) x cos(x) ex dx Let u = x cos x, dv = ex dx, du = (cos x − x sin x) dx, v = ex R I= Z x x x cos x e dx = x cos x e − Z x e cos x dx + Z x sin x ex dx. Let u = x sin x, dv = ex dx, du = (sin x + x cos x) dx, v = ex , x I = x cos x e − Z x x e cos x dx + x sin x e − ⇒ 2I = x cos x ex − Z Z x e sin x dx − ex cos x dx + x sin x ex − Let u = sin x, dv = ex dx, du = cos x dx, v = ex , x ⇒ 2I = x cos x e − ⇒I = Z x x x Z Z x cos x ex dx ⇐ I. ex sin x dx. e cos x dx + x sin x e − e sin x − Z 1 (x cos x ex + x sin x ex − ex sin x) + C. 2 16 x e cos x dx .