Download Identifying Angles

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Identifying Angles
3-1 Note-taking Guide
DLB Geometry
Alternate Interior Angles are…
non-adjacent interior angles that lie on opposite sides of the
transversal.
Examples:
β€’ ∠4 π‘Žπ‘›π‘‘ ∠6
β€’ ∠3 π‘Žπ‘›π‘‘ ∠5
Same-Side Interior Angles are…
interior angles that lie on the same side of the transversal.
Examples:
β€’ ∠4 π‘Žπ‘›π‘‘ ∠5
β€’ ∠3 π‘Žπ‘›π‘‘ ∠6
Corresponding Angles…
lie on the same side of the transversal in corresponding positions.
Examples:
β€’ ∠1 π‘Žπ‘›π‘‘ ∠5
β€’ ∠2 π‘Žπ‘›π‘‘ ∠6
β€’ ∠3 π‘Žπ‘›π‘‘ ∠7
β€’ ∠4 π‘Žπ‘›π‘‘ ∠8
Alternate Exterior Angles are…
non-adjacent exterior angles that lie on opposite sides of the
transversal.
Examples:
β€’ ∠1 π‘Žπ‘›π‘‘ ∠7
β€’ ∠2 π‘Žπ‘›π‘‘ ∠8
Let’s Review
Vertical Angles
and Linear Pairs!
Vertical angles are…
nonadjacent angles formed by two intersecting lines.
Vertical Angles Theorem: Vertical angles are congruent.
Examples of vertical angles:
β€’ ∠1 π‘Žπ‘›π‘‘ ∠3
β€’ ∠5 π‘Žπ‘›π‘‘ ∠7
β€’ ∠2 π‘Žπ‘›π‘‘ ∠4
β€’ ∠6 π‘Žπ‘›π‘‘ ∠8
A Linear Pair is…
adjacent angles whose non-common sides are opposite rays
Linear Pair Postulate: If two angles form a linear pair, then they are
supplementary.
Examples of linear pairs:
β€’ π‘šβˆ 1 + π‘šβˆ 2 = 180
β€’ π‘šβˆ 3 + π‘šβˆ 4 = 180
β€’ π‘šβˆ 5 + π‘šβˆ 6 = 180
β€’ π‘šβˆ 7 + π‘šβˆ 8 = 180
β€’ π‘šβˆ 2 + π‘šβˆ 3 = 180
β€’ π‘šβˆ 1 + π‘šβˆ 4 = 180
β€’ π‘šβˆ 6 + π‘šβˆ 7 = 180
β€’ π‘šβˆ 5 + π‘šβˆ 8 = 180
Related documents