Download Derivatives of Trigonometric Functions section 3.9

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Derivatives of Trigonometric Functions
section 3.9
Consider the unit circle ; so we have OC = 1 in the picture below.
△
△
Because of similarity between the two triangles OCD and OAB we have
CD
AB
=
OC
OA
⇒
CD
sin θ
=
1
cos θ
⇒
CD = tan θ
D
B
θ
O
A
C
Because of the equality CD = tan θ , the axis that passes through the points C and D is called
the tangent axis.
Now assume for a moment that the radius of the circle is r. The sector OBC faces the polar
angle θ.
angle
area of associated sector
2π
πr2
θ
?
1
⇒
(θ)(πr2 )
1
= θr2
2π
2
?=
area of sector with polar angle θ = 12 θr2
Note: This formula is true only if θ is measured in radians.
Now let us assume for a moment that the above circle has radius 1. Then by putting r = 1 in
the above formula we have:
1
area of sector OBC = θ
2
Now note that
area of triangle OAB < area of sector OBC < area of triangle OCD
1
1
1
(OA)(AB) < θ < (OC)(CD)
2
2
2
1
1
1
(cos θ)(sin θ) < θ < (1)(tan θ)
2
2
2
multiply by 2 and divide by sin θ
cos θ <
θ
1
<
sin θ
cos θ
Now let θ → 0+ and use the Sandwich Theorem to get
lim
θ→0+
θ
=1
sin θ
Then
lim
θ→0+
sin θ
1
1
= lim θ =
+
θ
θ→0
limθ→0+
sin θ
2
θ
sin θ
=
1
=1
1
(∗)
Now we calculate the left-hand limit:
limθ→0−
sin θ
θ
= limx→0+
sin(−x)
−x
= limx→0+
− sin x
−x
= limx→0+
sin x
x
= 1
change of variable x = −θ
using the identity sin(−x) = − sin x
using the identity (*)
So ,
lim−
θ→0
sin θ
=1
θ
(∗∗)
From both (∗) and (∗∗) we have
sin θ
θ→0 θ
lim
=1
Example (section 3.9 exercise 33). Calculate lim
θ→0
tan θ
θ
Solution.
sin θ
tan θ
sin θ 1
= lim cos θ = lim
θ→0 θ
θ→0 θ
θ→0 θ
cos θ
lim
= lim
θ→0
sin θ
1
1
lim
= (1)( ) = 1
θ θ→0 cos θ
1
sin( x2 )
1
x→∞ sin( x )
Example (section 3.9 exercise 36). Calculate lim
3
Solution. Using the change of variable y =
1
x
we can write
sin( x2 )
sin(2y)
lim
= lim
= lim
1
x→∞ sin( )
y→0
y→0 sin(y)
x
sin(2y)
y
sin y
y
= lim
2 sin(2y)
2y
y→0
sin y
y
=
(2)(1)
=2
1
We now calculate the derivative of the sine function: For this we use
sin′ (x) =
=
=
sin(x+∆x)−sin x
∆x
∆x→0
lim
2
∆x→0 ∆x
lim
lim
∆x→0
[
sin
sin( ∆x
2 )
(
∆x
2
)
( ∆x )
2
(
cos x +
∆x
2
(
lim cos x +
∆x→0
)]
∆x
2
using
a+b
sin a − sin b = 2 sin( a−b
2 ) cos( 2 )
)
= (1) cos(x + 0) = cos x
So
d
dx
sin x = cos x
Now we find the derivative of the cosine function:
(π
)
d
d
cos
x
=
sin
−
x
dx
dx
2
= sin′
(π
= cos
(π
){
}′
− x π2 − x
2
2
= − cos
)
− x {−1}
(π
2
)
−x
= − sin x
So
d
dx
cos x = − sin x
4
Now the derivative of the tangent function :
tan′ x =
d sin x
dx cos x
=
{sin x}′ {cos x}−{sin x}{cos x}′
cos2 x
=
{cos x}{cos x}−{sin x}{− sin x}
cos2 x
=
cos2 x+sin2 x
cos2 x
d
dx
=
1
cos2 x
= sec2 x
tan x = sec2 x
Now the derivative of the cotangent function :
cot′ x =
d cos x
dx sin x
=
{cos x}′ {sin x}−{cos x}{sin x}′
sin2 x
=
{− sin x}{sin x}−{cos x}{cos x}
sin2 x
=
−(cos2 x+sin2 x)
sin2 x
d
dx
=
−1
sin2 x
cot x = − csc2 x
5
= − csc2 x
Now the derivative of the secant function :
sec′ x =
d
dx
(
1
cos x
)
=
{1}′ {cos x}−{1}{cos x}′
cos2 x
=
{0}{cos x}−{1}{− sin x}
cos2 x
=
sin x
cos2 x
d
dx
=
1 sin x
cos x cos x
= sec x tan x
sec x = sec x tan x
Now the derivative of the cosecant function :
csc′ x =
d 1
dx sin x
=
{1}′ {sin x}−{1}{sin x}′
sin2 x
=
{0}{sin x}−{1}{cos x}
sin2 x
=
− cos x
sin2 x
d
dx
= − sin1 x
cos x
sin x
= − csc x cot x
csc x = − csc x cot x
6
Putting all these together:
d
dx
sin x
d
dx
cos x =
− sin x
d
dx
tan x =
sec2 x
d
dx
cot x =
− csc2 x
d
dx
sec x =
sec x tan x
d
dx
csc x = − csc x cot x
=
cos x
Note: These formulae are true only if the unit of measurement is radian.
And , using the chain rule , we have the following formulae if interim variables are involved:
d
dx
sin u
(cos u) du
dx
d
dx
cos u =
(− sin u) du
dx
d
dx
tan u =
(sec2 u) du
dx
d
dx
cot u =
(− csc2 u) du
dx
d
dx
sec u =
(sec u tan u) du
dx
d
dx
csc u = (− csc u cot u) du
dx
=
7
Example. Find the equation of the tangent line to the curve y =
sec x
1+tan x
at the point where
x=0.
Solution.
y′ =
=
{sec x}′ {1 + tan x} − {sec x}{1 + tan x}′
(1 + tan x)2
{sec x tan x}{1 + tan x} − {sec x}{sec2 x}
(1 + tan x)2
⇒
x=0
slope =
(0)(1) − (1)(1)
= −1
(1)2
Also note that at x = 0 we have y = 1. Therefore:
tangent line
⇒
y − 1 = (−1)(x − 0)
dy
Example (from the textbook). Find dx for
Solution. Let u = 4x. Then
y = (tan u)
2
⇒
dy
dx
=
⇒
y = −x + 1
y = tan2 (4x)
{ }{ }
dy
du
du
dx
{
}{ }
du
= 2(tan u)(sec2 u) dx
{
}{ }
2
= 2(tan u)(sec u) 4
= 8 tan(4x) sec2(4x)
8
✓
power rule
Example (from the textbook - pages 203 and 204). Find
dy
dx
for x2 tan y + y sin x = 5
Solution. This is an implicit differentiation. If the “prime notation” is meant to denote differentiation with respect to x , then we have
{
} {
}
{x2 }′ {tan y} + {x2 }{tan y}′ + {y}′ {sin x} + {y}{sin x}′ = {5}′
} {
}
{
{2x}{tan y} + {x2 }{(sec2 y) y ′ } + {y ′ }{sin x} + {y}{cos x} = 0
factor out the term y′
⇒
⇒
y′ =
(2x tan y + y cos x) + (x2 sec2 y + sin x)y ′ = 0
−(2x tan y + y cos x)
(x2 sec2 y + sin x)
dy
Example (section 3.9 exercise 30 - modified). Find
dx for
✓
y =
1+tan3 (3x2 −4)
x2 sin(x3 )
.
Solution. Set u = 3x2 −4 and t = x3 . If the “prime notation” is meant to denote differentiation
9
with respect to x , then we have y =
dy
dx
=
1+(tan(u))3
x2 sin t
so then:
{1+(tan u)3 }′ {x2 sin t}−{1+(tan u)3 }{x2 sin t}′
(x2 sin t)2
{
3(tan u)2 (tan u)′
}{
} {
}{
=
x4 sin2 t
{
}{
3(tan u)2 (sec2 u)(u′ )
} {
}{
x2 sin t − 1+(tan u)3
=
{2x}{sin t}+{x2 }{(cos t)(t′ )}
}
x4 sin2 t
{
}{
} {
}{
x2 sin t − 1+(tan u)3
3(tan u)2 (sec2 u)(6x)
=
}
{2x}{sin t}+{x2 }{(cos t)(3x2 )}
x4 sin2 t
{
} {
18x3 tan2 u sec2 u sin t
=
{x2 }′ {sin t}+{x2 }{sin t}′
x2 sin t − 1+(tan u)3
}
−
}{
1+tan3 u
x4 sin2 t
where u = 3x2 − 4 and t = x3
10
2x sin t+3x4 cos t
}
Related documents