Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
6.2 Sum, Difference, and Double Angle Identities The expressions sin (A + B) and cos (A + B) occur frequently enough in math that it is necessary to find expressions equivalent to them that involve sines and cosines of single angles. So…. Does sin (A + B) = Sin A + Sin B Let A = 30 and B = 60 sin(30  60 )  sin 30  sin 60 1 3 sin(90 )   2 2 1 3 1 2 Math 30-1 1 Sum and Difference Identities Formula Sheet sin (A + B) = sin A cos B + cos A sin B sin (A - B) = sin A cos B - cos A sin B cos (A + B) = cos A cos B - sin A sin B cos (A - B) = cos A cos B + sin A sin B tanA  tanB tan(A  B)  1  tan Atan B tanA  tanB tan(A  B)  1  tan Atan B Math 30-1 2 Simplifying Trigonometric Expressions 1. Express cos 1000 cos 800 + sin 800 sin 1000 as a trigonometric function of a single angle. This expression has the same pattern as cos (A - B), with A = 1000 and B = 800. cos 100 cos 80 + sin 80 sin 100 = cos(1000 - 800) = cos 200 2.     Express sin cos  cos sin as a single trig function. 3 6 3 6 This expression has the same pattern as sin(A - B),   with A  and B  . 3 6     sin cos  cos sin  sin     3 6 3 6 3 6     Math 30-1  sin  6 3 Determine Exact Values using Sum or Difference Identities 1. Determine the exact value for sin 750. Think of the angle measures that produce exact values: 300, 450, and 600. Use the sum and difference identities - which angles, used in combination of addition or subtraction, would give a result of 750? ar e Q Iui G needed F ckTi decom m e™ t oprand see essor a t his pict ur e. ar e Q Iui G needed F ckTi decom m e™ t oprand see essor a t his pict ur e. sin 750 = sin(300 + 450) = sin 300 cos 450 + cos 300 sin 450 2    3 1 2          2 2 2  2   2 6 4 Math 30-1 4 Finding Exact Values 2. Determine the exact value for cos 150. cos 150 = cos(450 - 300) = cos 450 cos 300 + sin 450 sin300  2 1  3   2         2  2   2  2 6 2 4  5 3. Find the exact value for sin . 12 5   sin  sin(  ) 12 4 6      sin cos  cos sin 4 6 4 6  2 1  3   2         2  2   2  2  6 2 4 Math 30-1  4  3 12  3 4 12  2  6 12  5 Determine the exact value of tan105 tan105  tan 135  30  tan135  tan 30  1  tan135 tan 30   1  1   3     1    1   1  3    1   1   3   1 1  3        Determine a common denominator Combine terms in numerator Rationalize the denominator or…….  3    3 Math 30-1  3 1      1 3  6 Using the Sum and Difference Identities     Prove cos      sin. 2   cos     2  cos  cos   sin    sin  sin  sin 2 2 (0) (cos )  (1)(sin) (1)(sin  )  sin  L.S. = R.S. Math 30-1 7 Using the Sum and Difference Identities 2 4 Given sin A= and cos B = , where A and B are 3 5 acute angles, determine the exact value of sin(A + B). sin(A + B)=sin A cos B  cos A sin B  2  4   5   3             3  5   3   5  A x y r 5 2 3 B 4 3 5 8+3 5  15 8+3 5 Therefore, sin(A + B)= . 15 Math 30-1 8 Double Angle Identities The identities for the sine and cosine of the sum of two numbers can be used, when the two numbers A and B are equal, to develop the identities for sin 2A and cos 2A. cos 2A = cos (A + A) sin 2A = sin (A + A) = sin A cos A + cos A sin A = cos A cos A - sin A sin A = 2 sin A cos A = cos2 A - sin2A Identities for sin 2A and cos 2A: cos 2A = cos2A - sin2A cos 2A = 2cos2A - 1 cos 2A = 1 - 2sin2A sin 2A = 2sin A cos A Math 30-1 9 Double Angle Identities Express each in terms of a single trig function. a) 2 sin 45° cos 45 ° sin 2x = 2sin x cos x sin 2(45 ° ) = 2sin 45 ° cos 45 ° = sin 90 ° Math 30-1 b) cos2 5 - sin2 5 cos 2x = cos2 x - sin2 x cos 2(5) = cos2 5 - sin2 5 = cos 10 10 Double Angle Identities Verify the identity tan A  tan A L.S = R.S. 1  cos 2 A . sin 2A 1  (cos 2 A  sin 2 A) 2sin A cos A 1  cos 2 A  sin 2 A 2sin A cos A sin 2 A  sin 2 A 2sin A cos A 2sin 2 A 2sin A cos A sin A cos A Math 30-1 tan A 11 Double Angle Identities sin 2x . Verify the identity tan x  1  cos 2x tan x 2sin x cos x 1  2 cos 2 x  1 2sin x cos x 2 cos 2 x sin x cos x tan x L.S = R.S. Math 30-1 12 Identities Prove 2tanx 1  tan2 x  sin2x. 2sin x cos x 2sin x cos x sec 2 x 2sin x cos x 1 cos 2 x 2sin x cos 2 x  cos x 1 2sin x cos x L.S. = R.S. Math 30-1 13 Textbook p. 306 – 308 Low: (Basic Drill and Practice) 1 – 8, 10, 11, 12 Medium: (Problem Solving and Word Problems) 9, 13, 15, 16, 19, 20 High: (Extension and Higher Level) 14, 17, 18, 21, 22, 24 Math 30-1 14