Download ExamView - Exponents review.tst

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Name: ________________________ Class: ___________________ Date: __________
ID: A
Exponential Functions Review
Multiple Choice
Identify the choice that best completes the statement or answers the question.
Simplify the expression.
____
____
0
1. (−8.6)
a. –1
5.
____
____
1
6
b.
−
c.
1
6
d.
−
b.
16
c.
1
16
d.
–8
b.
b3
7a 5
c.
7b 3
a5
d.
7a 5 b −3
b.
96c
d2
c.
12
c8 d2
d.
12c 8
d2
b.
–500
c.
4
5
d.
–200
b.
–15
c.
0
d.
125
b.
1728 7
c.
1
d.
12 7
b.
11
c.
–7.4611
d.
7.46
b.
5k 11
c.
6k 11
d.
6k 24
1
−1 6
1
6
−
1
16
7ab −15
12
c d2
12
cd −6
6. 20 ⋅ 5 −2
a.
____
d.
−8
a.
____
–8.6
4. 7a −5 b 3
a.
____
c.
3. (4) −2
a.
____
0
2. −(6) −1
a.
____
b.
25
7. 5 −3 ⋅ 7 0
1
a.
125
8. 12 −3 ⋅ 12 10 ⋅ 12 0
a. 36 7
9. (7.46) −5 ⋅ (7.46) 6
a.
1
____ 10. 2k 8 ⋅ 3k 3
a. 5k 24
1
Name: ________________________
____ 11. 7x −8 ⋅ 6x 3
42
a.
x5
ID: A
b.
1
42x 5
c.
42x 11
d.
13x −5
b.
10a 6 b 9
c.
18ab 15
d.
18a 45 b 9
b.
−
c.
−
2x 5
5y 3
d.
−
b.
216 2t − 1
c.
6 2t − 1
d.
6 2t − 2
b.
2k 8
c.
k 16
d.
k8
b.
x
12
c.
1
t 12
d.
1
t 64
b.
1
c.
x 14
d.
x 126
b.
h1
c.
h 20
d.
−h 20
b.
125k 5
c.
5k 6
d.
5k 8
b.
3x 8 y 12
c.
2x 3 y 12
d.
9x 8 y 9
25g 26 h 20
b.
g 26 h 20
25
c.
−25g 26 h 20
d.
25g 15 h 14
3 35
b.
3 12
c.
1
39
d.
9
____ 12. a 5 ⋅ 3b 9 ⋅ 6a
a. 18a 6 b 9
____ 13. −4x 3 ⋅ 2y −2 ⋅ 5y 5 ⋅ x −8
a.
−
x2
40y 3
____ 14. 6 ⋅ 6 t − 2 ⋅ 6 t
a. 18 2t − 2
40y 3
x5
5y 3
2x
____ 15. (k 2 ) 4
a.
k6
____ 16. (t −2 ) 6
a.
t 12
____ 17. (x 9 ) 0 (x 7 ) 2
a.
x 18
____ 18. (−h 4 ) 5
a.
−h 9
____ 19. (5k 2 ) 3
a.
125k 6
____ 20. (3xy 3 ) 2 (xy) 6
a.
9x 8 y 12
____ 21. (−5g 5 h 6 ) 2 (g 4 h 2 ) 4
a.
____ 22.
37
35
a.
2
Name: ________________________
____ 23.
x 14
x7
a.
____ 24.
b.
x 98
c.
1
x7
d.
x 21
1
x 14
b.
x4
c.
x 14
d.
1
x4
1
81
b.
9 16
c.
1
9 16
d.
81
b.
m3 n 12
c.
m7
n2
d.
m7 n 2
b.
6x 4
c.
12x 4
8
d.
81x 4
2
b.
21
30
c.
100
7
d.
1000
343
b.
1
m18
c.
m18
d.
−m216
b.
64
c.
2 30
d.
2 −30
c.
9 (−6)
d.
1
144
97
99
a.
____ 26.
x7
x5
x9
a.
____ 25.
ID: A
m−6 n −3
m−13 n −1
n −9
a.
n −14
ÊÁ 3x ˆ˜ 4
____ 27. ÁÁÁÁ ˜˜˜˜
Ë 2 ¯
81x 4
a.
16
3
ÁÊ 7 ˜ˆ
____ 28. ÁÁÁÁ ˜˜˜˜
Ë 10 ¯
343
a.
1000
ÊÁ −1 5 ˆ˜ −3
Á m m ˜˜
˜˜
____ 29. ÁÁÁÁ
ÁË m−2 ˜˜¯
3m4
a. − −2
m
2
ÁÊÁ (−1) 5 ˜ˆ˜
ÁÁ
˜˜
____ 30. ÁÁ
˜
ÁÁ (−2) −3 ˜˜˜
Ë
¯
1
a.
64
____ 31. Evaluate 9x 2 y −2 for x = –3 and y = 2.
1
a. 324
b. 20
4
3
0
Name: ________________________
____ 32. Evaluate
a.
ID: A
1
for x = 2 and y = –4.
2 x −3 y 5
−2
16
b.
–4
____ 33. Write 4 ⋅ 10 −3 as a decimal.
a. 0.4
b. 0.004
c.
−
1
32
d.
–16
c.
–120
d.
4,000
____ 34. Chase scored 14 points on Monday, and he doubled his score each day thereafter. How many points did he
score on Thursday?
a. 224 points
b. 112 points
c. 56 points
d. 42 points
____ 35. Which number is NOT written in scientific notation?
a. 3 × 10 −8
b. 6.7 × 10 3
c. 8.7 × 10 −5
d.
25.67 × 10 −2
____ 36. Which number is written in scientific notation?
b. 3.4 × 100 2
c.
a. 7.8 × 10 −5
0.84 × 10 6
d.
−5 × 10 −12
Write the number in scientific notation.
____ 37. 8,670,000,000
a. 0.867 × 10 10
b.
86.7 × 100 8
c.
8.67 × 10 9
d.
8.67 × 10
____ 38. 0.0805
a. 80.5 × 100 −3
b.
8.05 × 10
c.
0.805 × 10 −1
d.
8.05 × 10 −2
Write the number in standard notation.
____ 39. 9 × 10 4
a. 9,000
b.
90 4
c.
90,000
d.
360
____ 40. 9.07 × 10 −2
a. 0.0907
b.
0.907
c.
0.00907
d.
–181.4
____ 41. Which list shows the numbers in order from least to greatest?
a. 5.4 × 10 4 , 5.4 × 10 3 , 4.5 × 10 4
c. 5.4 × 10 3 , 5.4 × 10 4 , 4.5 × 10 4
3
4
4
b. 5.4 × 10 , 4.5 × 10 , 5.4 × 10
d. 4.5 × 10 4 , 5.4 × 10 3 , 5.4 × 10 4
Simplify the expression. Write the answer using scientific notation.
Ê
ˆ
____ 42. 8 ÁÁ 8.8 × 10 12 ˜˜
Ë
¯
a. 70.4 × 10 12
b.
70.4 × 10 24
c.
7.04 × 10 13
d.
1.68 × 10 13
Ê
ˆ
____ 43. 0.6 ÁÁ 6.5 × 10 −5 ˜˜
Ë
¯
−6
a. 3.9 × 10
b.
3.9 × 10 −5
c.
3.9 × 10 −4
d.
7.1 × 10 −5
4
Name: ________________________
ID: A
____ 44. Astronomers measure large distances in light-years. One light-year is the distance that light can travel in one
year, or approximately 5,880,000,000,000 miles. Suppose a star is 13.6 light-years from Earth. In scientific
notation, how many miles away is it?
c. 7.9968 × 10 13 miles
a. 1.36 × 10 12 miles
b. 5.88 × 10 12 miles
d. 5.88 × 10 13 miles
Ê
ˆÊ
ˆ
____ 45. ÁÁ 9 × 10 7 ˜˜ ÁÁ 7 × 10 9 ˜˜
Ë
¯Ë
¯
64
a. 6.3 × 10
b.
6.3 × 10 17
c.
1.6 × 10 64
d.
1.6 × 10 17
Ê
ˆÊ
ˆ
____ 46. ÁÁ 0.4 × 10−6 ˜˜ ÁÁ 0.7 × 10 −2 ˜˜
Ë
¯Ë
¯
−9
a. 2.8 × 10
b.
2.8 × 10 −8
c.
2.8 × 10 −7
d.
0.28 × 10 −9
6.25 × 10 −18
c.
0.0625 × 10 −16
d.
−8 × 10 −16
____ 47. (4 × 10 8 ) −2
a.
6.25 × 10 −17
b.
Complete the equation, by supplying the missing exponent.
____ 48. 3
a.
⋅ 3 −6 = 3 2
–8
–3
c.
8
d.
4
–3
c.
–8
d.
8
⋅ n 2 ⋅ m3 = m11 n 2
____ 49. m
a.
b.
4
b.
____ 50. Last year a large trucking company delivered 8.0 × 10 5 tons of goods with an average value of $30,000 per
ton. What was the total value of the goods delivered? Write the answer in scientific notation.
a. 2.4 × 10 9 dollars
c. 2.4 × 10 11 dollars
d. 2.4 × 10 10 dollars
b. 2.4 × 10 12 dollars
____ 51. Suppose a spherical asteroid has a diameter of approximately 4.8 × 10 3 m.
a. Find the radius using scientific notation.
ÊÁ 4 ˆ˜
b. Use the formula ÁÁÁÁ ˜˜˜˜ π r 3 to find the approximate volume of the asteroid.
Ë3¯
a.
b.
2.4 × 10 2 m; 5.791 × 10 7 m3
2.4 × 10 3 m; 3.016 × 10 4 m3
c.
d.
9.6 × 10 3 m; 3.706 × 10 12 m3
2.4 × 10 3 m; 5.791 × 10 10 m3
____ 52. Radio signals travel at a rate of 3 × 10 8 meters per second. How many seconds will it take for a radio signal
to travel from a satellite to the surface of the Earth if the satellite is orbiting at a height of 3.6 × 10 7 meters?
a. 8.3 seconds
c. 1.08 × 10 16 seconds
−1
b. 1.2 × 10 seconds
d. 10.8 × 10 15 seconds
b
____ 53. Determine whether (n a ) b = n a is always, sometimes, or never true.
a. always
b. sometimes
c. never
5
Name: ________________________
ID: A
Find the common ratio of the sequence.
____ 54. 2, –10, 50, –250, . . .
a.
–5
b.
–12
c.
1
−5
d.
12
2
c.
1
2
d.
82
____ 55. –164, –82, –41, –20.5, . . .
a.
–82
b.
____ 56. Find the next three terms of the sequence 3, 9, 27, 81, . . .
a. –243, –729, –2187
c. 81, 243, 729
b. 243, 729, 2187
d. 87, 249, 87
Determine whether the sequence is arithmetic or geometric.
____ 57. –2, 10, –50, 250, . . .
a. arithmetic
b.
geometric
Find the first, fourth, and eighth terms of the sequence.
____ 58. A(n) = −2 ⋅ 2 n − 1
a. 1; –64; –16,384
b. –4; –32; –512
c.
d.
–2; –16; –256
–8; –64; –1,024
Evaluate the function rule for the given value.
____ 59. y = 15 ⋅ 3 x for x = –3
5
a.
b.
27
5
3
c.
5
9
d.
–135
1
729
c.
1
243
d.
–125
____ 60. f(x) = 3 x for x = –5
a.
–15
b.
6
ID: A
Exponential Functions Review
Answer Section
MULTIPLE CHOICE
1. ANS: D
PTS: 1
DIF: L2
REF: 8-1 Zero and Negative Exponents
OBJ: 8-1.1 Zero and Negative Exponents
NAT: ADP J.1.1 | ADP J.1.6
STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
TOP: 8-1 Example 1
KEY: zero as an exponent | negative exponent | simplfying a power
2. ANS: D
PTS: 1
DIF: L2
REF: 8-1 Zero and Negative Exponents
OBJ: 8-1.1 Zero and Negative Exponents
NAT: ADP J.1.1 | ADP J.1.6
STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
TOP: 8-1 Example 1
KEY: zero as an exponent | negative exponent | simplfying a power
3. ANS: C
PTS: 1
DIF: L2
REF: 8-1 Zero and Negative Exponents
OBJ: 8-1.1 Zero and Negative Exponents
NAT: ADP J.1.1 | ADP J.1.6
STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
TOP: 8-1 Example 1
KEY: zero as an exponent | negative exponent | simplfying a power
4. ANS: C
PTS: 1
DIF: L2
REF: 8-1 Zero and Negative Exponents
OBJ: 8-1.1 Zero and Negative Exponents
NAT: ADP J.1.1 | ADP J.1.6
STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
TOP: 8-1 Example 2
KEY: zero as an exponent | negative exponent | simplifying an exponential expression
5. ANS: D
PTS: 1
DIF: L2
REF: 8-1 Zero and Negative Exponents
OBJ: 8-1.1 Zero and Negative Exponents
NAT: ADP J.1.1 | ADP J.1.6
STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
TOP: 8-1 Example 2
KEY: negative exponent | simplifying an exponential expression
6. ANS: C
PTS: 1
DIF: L3
REF: 8-1 Zero and Negative Exponents
OBJ: 8-1.1 Zero and Negative Exponents
NAT: ADP J.1.1 | ADP J.1.6
STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
TOP: 8-1 Example 1
KEY: negative exponent | simplifying an exponential expression
7. ANS: A
PTS: 1
DIF: L3
REF: 8-1 Zero and Negative Exponents
OBJ: 8-1.1 Zero and Negative Exponents
NAT: ADP J.1.1 | ADP J.1.6
STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
TOP: 8-1 Example 1
KEY: simplifying an exponential expression | zero as an exponent | simplfying a power
8. ANS: D
PTS: 1
DIF: L2
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.1 Multiplying Powers
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-3 Example 1
KEY: multiplying powers with the same base | exponential expression | simplifying an exponential
expression
1
ID: A
9. ANS: D
PTS: 1
DIF: L2
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.1 Multiplying Powers
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-3 Example 1
KEY: multiplying powers with the same base | exponential expression | simplifying an exponential
expression
10. ANS: C
PTS: 1
DIF: L2
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.1 Multiplying Powers
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-3 Example 2
KEY: exponential expression | simplifying an exponential expression | multiplying powers with the same
base
11. ANS: A
PTS: 1
DIF: L2
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.1 Multiplying Powers
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-1 Example 2
KEY: exponential expression | simplifying an exponential expression | multiplying powers with the same
base
12. ANS: A
PTS: 1
DIF: L2
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.1 Multiplying Powers
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-3 Example 2
KEY: exponential expression | simplifying an exponential expression | multiplying powers with the same
base
13. ANS: B
PTS: 1
DIF: L3
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.1 Multiplying Powers
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-3 Example 2
KEY: multiplying powers with the same base | exponential expression | simplifying an exponential
expression
14. ANS: C
PTS: 1
DIF: L4
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.1 Multiplying Powers
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-3 Example 2
KEY: exponential expression | multiplying powers with the same base | simplifying an exponential
expression
15. ANS: D
PTS: 1
DIF: L2
REF: 8-4 More Multiplication Properties of Exponents
OBJ: 8-4.1 Raising a Power to a Power
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-4 Example 1
KEY: raising a power to a power | exponential expression | simplifying an exponential expression
16. ANS: C
PTS: 1
DIF: L2
REF: 8-4 More Multiplication Properties of Exponents
OBJ: 8-4.1 Raising a Power to a Power
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-4 Example 1
KEY: raising a power to a power | exponential expression | simplifying an exponential expression
2
ID: A
17. ANS: C
PTS: 1
DIF: L2
REF: 8-4 More Multiplication Properties of Exponents
OBJ: 8-4.1 Raising a Power to a Power
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-4 Example 2
KEY: exponential expression | simplifying an exponential expression | simplifying an expression with
powers
18. ANS: D
PTS: 1
DIF: L2
REF: 8-4 More Multiplication Properties of Exponents
OBJ: 8-4.1 Raising a Power to a Power
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-4 Example 1
KEY: raising a power to a power | exponential expression | simplifying an exponential expression
19. ANS: A
PTS: 1
DIF: L2
REF: 8-4 More Multiplication Properties of Exponents
OBJ: 8-4.2 Raising a Product to a Power
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-4 Example 3
KEY: raising a product to a power | exponential expression | simplifying an exponential expression
20. ANS: A
PTS: 1
DIF: L2
REF: 8-4 More Multiplication Properties of Exponents
OBJ: 8-4.2 Raising a Product to a Power
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-4 Example 4
KEY: raising a product to a power | exponential expression | simplifying an exponential expression
21. ANS: A
PTS: 1
DIF: L3
REF: 8-4 More Multiplication Properties of Exponents
OBJ: 8-4.2 Raising a Product to a Power
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-4 Example 4
KEY: exponential expression | raising a product to a power | simplifying an exponential expression
22. ANS: D
PTS: 1
DIF: L2
REF: 8-5 Division Properties of Exponents
OBJ: 8-5.1 Dividing Powers With the Same Base
NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-5 Example 1
KEY: dividing powers with the same base | exponential expression
23. ANS: A
PTS: 1
DIF: L2
REF: 8-5 Division Properties of Exponents
OBJ: 8-5.1 Dividing Powers With the Same Base
NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-5 Example 1
KEY: dividing powers with the same base | exponential expression
24. ANS: D
PTS: 1
DIF: L2
REF: 8-5 Division Properties of Exponents
OBJ: 8-5.1 Dividing Powers With the Same Base
NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-5 Example 1
KEY: dividing powers with the same base | exponential expression
25. ANS: A
PTS: 1
DIF: L2
REF: 8-5 Division Properties of Exponents
OBJ: 8-5.1 Dividing Powers With the Same Base
NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-5 Example 1
KEY: dividing powers with the same base | exponential expression
3
ID: A
26. ANS:
REF:
OBJ:
STA:
KEY:
27. ANS:
REF:
NAT:
TOP:
28. ANS:
REF:
NAT:
TOP:
29. ANS:
REF:
NAT:
TOP:
KEY:
30. ANS:
REF:
NAT:
TOP:
KEY:
31. ANS:
OBJ:
STA:
TOP:
KEY:
32. ANS:
OBJ:
STA:
TOP:
KEY:
33. ANS:
OBJ:
STA:
TOP:
34. ANS:
OBJ:
STA:
TOP:
KEY:
35. ANS:
OBJ:
NAT:
STA:
KEY:
C
PTS: 1
DIF: L2
8-5 Division Properties of Exponents
8-5.1 Dividing Powers With the Same Base
NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1
NJ 4.1.12 B.4
TOP: 8-5 Example 1
dividing powers with the same base | exponential expression
A
PTS: 1
DIF: L2
8-5 Division Properties of Exponents
OBJ: 8-5.2 Raising a Quotient to a Power
ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4
8-5 Example 3
KEY: raising a quotient to a power | exponential expression
A
PTS: 1
DIF: L2
8-5 Division Properties of Exponents
OBJ: 8-5.2 Raising a Quotient to a Power
ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4
8-5 Example 3
KEY: raising a quotient to a power | exponential expression
B
PTS: 1
DIF: L3
8-5 Division Properties of Exponents
OBJ: 8-5.2 Raising a Quotient to a Power
ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4
8-5 Example 4
raising a quotient to a power | simplifying an exponential expression | exponential expression
B
PTS: 1
DIF: L3
8-5 Division Properties of Exponents
OBJ: 8-5.2 Raising a Quotient to a Power
ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4
8-5 Example 4
raising a quotient to a power | exponential expression | simplifying an exponential expression
B
PTS: 1
DIF: L2
REF: 8-1 Zero and Negative Exponents
8-1.2 Evaluating Exponential Expressions
NAT: ADP J.1.1 | ADP J.1.6
NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
8-1 Example 3
negative exponent | simplifying an exponential expression | evaluating exponential expression
C
PTS: 1
DIF: L3
REF: 8-1 Zero and Negative Exponents
8-1.2 Evaluating Exponential Expressions
NAT: ADP J.1.1 | ADP J.1.6
NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
8-1 Example 3
negative exponent | simplifying an exponential expression | evaluating exponential expression
B
PTS: 1
DIF: L3
REF: 8-1 Zero and Negative Exponents
8-1.1 Zero and Negative Exponents
NAT: ADP J.1.1 | ADP J.1.6
NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
8-1 Example 1
KEY: simplifying an exponential expression | negative exponent
B
PTS: 1
DIF: L3
REF: 8-1 Zero and Negative Exponents
8-1.2 Evaluating Exponential Expressions
NAT: ADP J.1.1 | ADP J.1.6
NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a
8-1 Example 4
evaluating exponential expression | simplfying a power | word problem | problem solving
D
PTS: 1
DIF: L2
REF: 8-2 Scientific Notation
8-2.1 Writing Numbers in Scientific and Standard Notations
NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2
NJ 4.1.12 B.2
TOP: 8-2 Example 1
scientific notation
4
ID: A
36. ANS:
OBJ:
NAT:
STA:
KEY:
37. ANS:
OBJ:
NAT:
STA:
KEY:
38. ANS:
OBJ:
NAT:
STA:
KEY:
39. ANS:
OBJ:
NAT:
STA:
KEY:
40. ANS:
OBJ:
NAT:
STA:
KEY:
41. ANS:
OBJ:
NAT:
STA:
KEY:
42. ANS:
OBJ:
NAT:
STA:
KEY:
43. ANS:
OBJ:
NAT:
STA:
KEY:
44. ANS:
OBJ:
NAT:
STA:
KEY:
A
PTS: 1
DIF: L2
REF: 8-2 Scientific Notation
8-2.1 Writing Numbers in Scientific and Standard Notations
NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2
NJ 4.1.12 B.2
TOP: 8-2 Example 1
scientific notation
C
PTS: 1
DIF: L2
REF: 8-2 Scientific Notation
8-2.1 Writing Numbers in Scientific and Standard Notations
NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2
NJ 4.1.12 B.2
TOP: 8-2 Example 2
scientific notation
D
PTS: 1
DIF: L2
REF: 8-2 Scientific Notation
8-2.1 Writing Numbers in Scientific and Standard Notations
NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2
NJ 4.1.12 B.2
TOP: 8-2 Example 2
scientific notation
C
PTS: 1
DIF: L2
REF: 8-2 Scientific Notation
8-2.1 Writing Numbers in Scientific and Standard Notations
NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2
NJ 4.1.12 B.2
TOP: 8-2 Example 3
scientific notation | standard notation
A
PTS: 1
DIF: L2
REF: 8-2 Scientific Notation
8-2.1 Writing Numbers in Scientific and Standard Notations
NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2
NJ 4.1.12 B.2
TOP: 8-2 Example 3
scientific notation | standard notation
B
PTS: 1
DIF: L2
REF: 8-2 Scientific Notation
8-2.2 Using Scientific Notation
NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2
NJ 4.1.12 B.2
TOP: 8-2 Example 5
standard notation | scientific notation | ordering
C
PTS: 1
DIF: L2
REF: 8-2 Scientific Notation
8-2.2 Using Scientific Notation
NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2
NJ 4.1.12 B.2
TOP: 8-2 Example 6
scientific notation | multiply a number using scientific notation
B
PTS: 1
DIF: L2
REF: 8-2 Scientific Notation
8-2.2 Using Scientific Notation
NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2
NJ 4.1.12 B.2
TOP: 8-2 Example 6
scientific notation | multiply a number using scientific notation
C
PTS: 1
DIF: L3
REF: 8-2 Scientific Notation
8-2.2 Using Scientific Notation
NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2
NJ 4.1.12 B.2
TOP: 8-2 Example 6
scientific notation | multiply a number using scientific notation | word problem | problem solving
5
ID: A
45. ANS: B
PTS: 1
DIF: L2
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.2 Working With Scientific Notation
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-3 Example 3
KEY: multiply a number using scientific notation | scientific notation | multiplying powers with the same
base | exponential expression
46. ANS: A
PTS: 1
DIF: L3
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.2 Working With Scientific Notation
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-3 Example 3
KEY: multiply a number using scientific notation | scientific notation | multiplying powers with the same
base | exponential expression
47. ANS: B
PTS: 1
DIF: L3
REF: 8-4 More Multiplication Properties of Exponents
OBJ: 8-4.2 Raising a Product to a Power
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-3 Example 4
KEY: scientific notation | raising a product to a power | multiply a number using scientific notation |
simplifying an exponential expression
48. ANS: C
PTS: 1
DIF: L3
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.1 Multiplying Powers
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
KEY: multiplying powers with the same base | simplifying an exponential expression | exponential
expression
49. ANS: D
PTS: 1
DIF: L3
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.1 Multiplying Powers
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
KEY: multiplying powers with the same base | simplifying an exponential expression | exponential
expression
50. ANS: D
PTS: 1
DIF: L3
REF: 8-3 Mulitplication Properties of Exponents
OBJ: 8-3.2 Working With Scientific Notation
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
KEY: scientific notation | word problem | problem solving | multiply a number using scientific notation
51. ANS: D
PTS: 1
DIF: L4
REF: 8-4 More Multiplication Properties of Exponents
OBJ: 8-4.2 Raising a Product to a Power
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-4 Example 5
KEY: raising a product to a power | scientific notation | problem solving | word problem | simplifying an
exponential expression | volume | sphere | multi-part question
52. ANS: B
PTS: 1
DIF: L3
REF: 8-5 Division Properties of Exponents
OBJ: 8-5.1 Dividing Powers With the Same Base
NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-5 Example 2
KEY: dividing powers with the same base | exponential expression | scientific notation | problem solving |
word problem
6
ID: A
53. ANS: B
PTS: 1
DIF: L4
REF: 8-4 More Multiplication Properties of Exponents
OBJ: 8-4.1 Raising a Power to a Power
NAT: ADP I.1.5 | ADP J.1.1
STA: NJ 4.1.12 B.4
TOP: 8-4 Example 3
KEY: raising a power to a power | exponential expression | simplifying an expression with powers |
reasoning | always sometimes never
54. ANS: A
PTS: 1
DIF: L2
REF: 8-6 Geometric Sequences
OBJ: 8-6.1 Geometric Sequences
NAT: NAEP 2005 A1a | NAEP 2005 A1i | ADP I.1.2
STA: NJ 4.3.12 A.1a
TOP: 8-6 Example 1
KEY: geometric sequence | common ratio
55. ANS: C
PTS: 1
DIF: L2
REF: 8-6 Geometric Sequences
OBJ: 8-6.1 Geometric Sequences
NAT: NAEP 2005 A1a | NAEP 2005 A1i | ADP I.1.2
STA: NJ 4.3.12 A.1a
TOP: 8-6 Example 1
KEY: geometric sequence | common ratio
56. ANS: B
PTS: 1
DIF: L2
REF: 8-6 Geometric Sequences
OBJ: 8-6.1 Geometric Sequences
NAT: NAEP 2005 A1a | NAEP 2005 A1i | ADP I.1.2
STA: NJ 4.3.12 A.1a
TOP: 8-6 Example 2
KEY: geometric sequence | common ratio
57. ANS: B
PTS: 1
DIF: L2
REF: 8-6 Geometric Sequences
OBJ: 8-6.1 Geometric Sequences
NAT: NAEP 2005 A1a | NAEP 2005 A1i | ADP I.1.2
STA: NJ 4.3.12 A.1a
TOP: 8-6 Example 3
KEY: arithmetic sequence | geometric sequence | common ratio | common difference
58. ANS: C
PTS: 1
DIF: L2
REF: 8-6 Geometric Sequences
OBJ: 8-6.2 Using a Formula
NAT: NAEP 2005 A1a | NAEP 2005 A1i | ADP I.1.2
STA: NJ 4.3.12 A.1a
TOP: 8-6 Example 4
KEY: geometric sequence | common ratio | formula
59. ANS: C
PTS: 1
DIF: L2
REF: 8-7 Exponential Functions
OBJ: 8-7.1 Evaluating Exponential Functions
NAT: NAEP 2005 A1e | ADP J.2.3 | ADP J.4.7 | ADP J.5.4
STA: NJ 4.1.12 B.4 | NJ 4.3.12 B.1
TOP: 8-7 Example 1
KEY: exponential function | function
60. ANS: C
PTS: 1
DIF: L2
REF: 8-7 Exponential Functions
OBJ: 8-7.1 Evaluating Exponential Functions
NAT: NAEP 2005 A1e | ADP J.2.3 | ADP J.4.7 | ADP J.5.4
STA: NJ 4.1.12 B.4 | NJ 4.3.12 B.1
TOP: 8-7 Example 1
KEY: exponential function | function
7
Related documents