Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name: ________________________ Class: ___________________ Date: __________ ID: A Exponential Functions Review Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the expression. ____ ____ 0 1. (−8.6) a. –1 5. ____ ____ 1 6 b. − c. 1 6 d. − b. 16 c. 1 16 d. –8 b. b3 7a 5 c. 7b 3 a5 d. 7a 5 b −3 b. 96c d2 c. 12 c8 d2 d. 12c 8 d2 b. –500 c. 4 5 d. –200 b. –15 c. 0 d. 125 b. 1728 7 c. 1 d. 12 7 b. 11 c. –7.4611 d. 7.46 b. 5k 11 c. 6k 11 d. 6k 24 1 −1 6 1 6 − 1 16 7ab −15 12 c d2 12 cd −6 6. 20 ⋅ 5 −2 a. ____ d. −8 a. ____ –8.6 4. 7a −5 b 3 a. ____ c. 3. (4) −2 a. ____ 0 2. −(6) −1 a. ____ b. 25 7. 5 −3 ⋅ 7 0 1 a. 125 8. 12 −3 ⋅ 12 10 ⋅ 12 0 a. 36 7 9. (7.46) −5 ⋅ (7.46) 6 a. 1 ____ 10. 2k 8 ⋅ 3k 3 a. 5k 24 1 Name: ________________________ ____ 11. 7x −8 ⋅ 6x 3 42 a. x5 ID: A b. 1 42x 5 c. 42x 11 d. 13x −5 b. 10a 6 b 9 c. 18ab 15 d. 18a 45 b 9 b. − c. − 2x 5 5y 3 d. − b. 216 2t − 1 c. 6 2t − 1 d. 6 2t − 2 b. 2k 8 c. k 16 d. k8 b. x 12 c. 1 t 12 d. 1 t 64 b. 1 c. x 14 d. x 126 b. h1 c. h 20 d. −h 20 b. 125k 5 c. 5k 6 d. 5k 8 b. 3x 8 y 12 c. 2x 3 y 12 d. 9x 8 y 9 25g 26 h 20 b. g 26 h 20 25 c. −25g 26 h 20 d. 25g 15 h 14 3 35 b. 3 12 c. 1 39 d. 9 ____ 12. a 5 ⋅ 3b 9 ⋅ 6a a. 18a 6 b 9 ____ 13. −4x 3 ⋅ 2y −2 ⋅ 5y 5 ⋅ x −8 a. − x2 40y 3 ____ 14. 6 ⋅ 6 t − 2 ⋅ 6 t a. 18 2t − 2 40y 3 x5 5y 3 2x ____ 15. (k 2 ) 4 a. k6 ____ 16. (t −2 ) 6 a. t 12 ____ 17. (x 9 ) 0 (x 7 ) 2 a. x 18 ____ 18. (−h 4 ) 5 a. −h 9 ____ 19. (5k 2 ) 3 a. 125k 6 ____ 20. (3xy 3 ) 2 (xy) 6 a. 9x 8 y 12 ____ 21. (−5g 5 h 6 ) 2 (g 4 h 2 ) 4 a. ____ 22. 37 35 a. 2 Name: ________________________ ____ 23. x 14 x7 a. ____ 24. b. x 98 c. 1 x7 d. x 21 1 x 14 b. x4 c. x 14 d. 1 x4 1 81 b. 9 16 c. 1 9 16 d. 81 b. m3 n 12 c. m7 n2 d. m7 n 2 b. 6x 4 c. 12x 4 8 d. 81x 4 2 b. 21 30 c. 100 7 d. 1000 343 b. 1 m18 c. m18 d. −m216 b. 64 c. 2 30 d. 2 −30 c. 9 (−6) d. 1 144 97 99 a. ____ 26. x7 x5 x9 a. ____ 25. ID: A m−6 n −3 m−13 n −1 n −9 a. n −14 ÊÁ 3x ˆ˜ 4 ____ 27. ÁÁÁÁ ˜˜˜˜ Ë 2 ¯ 81x 4 a. 16 3 ÁÊ 7 ˜ˆ ____ 28. ÁÁÁÁ ˜˜˜˜ Ë 10 ¯ 343 a. 1000 ÊÁ −1 5 ˆ˜ −3 Á m m ˜˜ ˜˜ ____ 29. ÁÁÁÁ ÁË m−2 ˜˜¯ 3m4 a. − −2 m 2 ÁÊÁ (−1) 5 ˜ˆ˜ ÁÁ ˜˜ ____ 30. ÁÁ ˜ ÁÁ (−2) −3 ˜˜˜ Ë ¯ 1 a. 64 ____ 31. Evaluate 9x 2 y −2 for x = –3 and y = 2. 1 a. 324 b. 20 4 3 0 Name: ________________________ ____ 32. Evaluate a. ID: A 1 for x = 2 and y = –4. 2 x −3 y 5 −2 16 b. –4 ____ 33. Write 4 ⋅ 10 −3 as a decimal. a. 0.4 b. 0.004 c. − 1 32 d. –16 c. –120 d. 4,000 ____ 34. Chase scored 14 points on Monday, and he doubled his score each day thereafter. How many points did he score on Thursday? a. 224 points b. 112 points c. 56 points d. 42 points ____ 35. Which number is NOT written in scientific notation? a. 3 × 10 −8 b. 6.7 × 10 3 c. 8.7 × 10 −5 d. 25.67 × 10 −2 ____ 36. Which number is written in scientific notation? b. 3.4 × 100 2 c. a. 7.8 × 10 −5 0.84 × 10 6 d. −5 × 10 −12 Write the number in scientific notation. ____ 37. 8,670,000,000 a. 0.867 × 10 10 b. 86.7 × 100 8 c. 8.67 × 10 9 d. 8.67 × 10 ____ 38. 0.0805 a. 80.5 × 100 −3 b. 8.05 × 10 c. 0.805 × 10 −1 d. 8.05 × 10 −2 Write the number in standard notation. ____ 39. 9 × 10 4 a. 9,000 b. 90 4 c. 90,000 d. 360 ____ 40. 9.07 × 10 −2 a. 0.0907 b. 0.907 c. 0.00907 d. –181.4 ____ 41. Which list shows the numbers in order from least to greatest? a. 5.4 × 10 4 , 5.4 × 10 3 , 4.5 × 10 4 c. 5.4 × 10 3 , 5.4 × 10 4 , 4.5 × 10 4 3 4 4 b. 5.4 × 10 , 4.5 × 10 , 5.4 × 10 d. 4.5 × 10 4 , 5.4 × 10 3 , 5.4 × 10 4 Simplify the expression. Write the answer using scientific notation. Ê ˆ ____ 42. 8 ÁÁ 8.8 × 10 12 ˜˜ Ë ¯ a. 70.4 × 10 12 b. 70.4 × 10 24 c. 7.04 × 10 13 d. 1.68 × 10 13 Ê ˆ ____ 43. 0.6 ÁÁ 6.5 × 10 −5 ˜˜ Ë ¯ −6 a. 3.9 × 10 b. 3.9 × 10 −5 c. 3.9 × 10 −4 d. 7.1 × 10 −5 4 Name: ________________________ ID: A ____ 44. Astronomers measure large distances in light-years. One light-year is the distance that light can travel in one year, or approximately 5,880,000,000,000 miles. Suppose a star is 13.6 light-years from Earth. In scientific notation, how many miles away is it? c. 7.9968 × 10 13 miles a. 1.36 × 10 12 miles b. 5.88 × 10 12 miles d. 5.88 × 10 13 miles Ê ˆÊ ˆ ____ 45. ÁÁ 9 × 10 7 ˜˜ ÁÁ 7 × 10 9 ˜˜ Ë ¯Ë ¯ 64 a. 6.3 × 10 b. 6.3 × 10 17 c. 1.6 × 10 64 d. 1.6 × 10 17 Ê ˆÊ ˆ ____ 46. ÁÁ 0.4 × 10−6 ˜˜ ÁÁ 0.7 × 10 −2 ˜˜ Ë ¯Ë ¯ −9 a. 2.8 × 10 b. 2.8 × 10 −8 c. 2.8 × 10 −7 d. 0.28 × 10 −9 6.25 × 10 −18 c. 0.0625 × 10 −16 d. −8 × 10 −16 ____ 47. (4 × 10 8 ) −2 a. 6.25 × 10 −17 b. Complete the equation, by supplying the missing exponent. ____ 48. 3 a. ⋅ 3 −6 = 3 2 –8 –3 c. 8 d. 4 –3 c. –8 d. 8 ⋅ n 2 ⋅ m3 = m11 n 2 ____ 49. m a. b. 4 b. ____ 50. Last year a large trucking company delivered 8.0 × 10 5 tons of goods with an average value of $30,000 per ton. What was the total value of the goods delivered? Write the answer in scientific notation. a. 2.4 × 10 9 dollars c. 2.4 × 10 11 dollars d. 2.4 × 10 10 dollars b. 2.4 × 10 12 dollars ____ 51. Suppose a spherical asteroid has a diameter of approximately 4.8 × 10 3 m. a. Find the radius using scientific notation. ÊÁ 4 ˆ˜ b. Use the formula ÁÁÁÁ ˜˜˜˜ π r 3 to find the approximate volume of the asteroid. Ë3¯ a. b. 2.4 × 10 2 m; 5.791 × 10 7 m3 2.4 × 10 3 m; 3.016 × 10 4 m3 c. d. 9.6 × 10 3 m; 3.706 × 10 12 m3 2.4 × 10 3 m; 5.791 × 10 10 m3 ____ 52. Radio signals travel at a rate of 3 × 10 8 meters per second. How many seconds will it take for a radio signal to travel from a satellite to the surface of the Earth if the satellite is orbiting at a height of 3.6 × 10 7 meters? a. 8.3 seconds c. 1.08 × 10 16 seconds −1 b. 1.2 × 10 seconds d. 10.8 × 10 15 seconds b ____ 53. Determine whether (n a ) b = n a is always, sometimes, or never true. a. always b. sometimes c. never 5 Name: ________________________ ID: A Find the common ratio of the sequence. ____ 54. 2, –10, 50, –250, . . . a. –5 b. –12 c. 1 −5 d. 12 2 c. 1 2 d. 82 ____ 55. –164, –82, –41, –20.5, . . . a. –82 b. ____ 56. Find the next three terms of the sequence 3, 9, 27, 81, . . . a. –243, –729, –2187 c. 81, 243, 729 b. 243, 729, 2187 d. 87, 249, 87 Determine whether the sequence is arithmetic or geometric. ____ 57. –2, 10, –50, 250, . . . a. arithmetic b. geometric Find the first, fourth, and eighth terms of the sequence. ____ 58. A(n) = −2 ⋅ 2 n − 1 a. 1; –64; –16,384 b. –4; –32; –512 c. d. –2; –16; –256 –8; –64; –1,024 Evaluate the function rule for the given value. ____ 59. y = 15 ⋅ 3 x for x = –3 5 a. b. 27 5 3 c. 5 9 d. –135 1 729 c. 1 243 d. –125 ____ 60. f(x) = 3 x for x = –5 a. –15 b. 6 ID: A Exponential Functions Review Answer Section MULTIPLE CHOICE 1. ANS: D PTS: 1 DIF: L2 REF: 8-1 Zero and Negative Exponents OBJ: 8-1.1 Zero and Negative Exponents NAT: ADP J.1.1 | ADP J.1.6 STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a TOP: 8-1 Example 1 KEY: zero as an exponent | negative exponent | simplfying a power 2. ANS: D PTS: 1 DIF: L2 REF: 8-1 Zero and Negative Exponents OBJ: 8-1.1 Zero and Negative Exponents NAT: ADP J.1.1 | ADP J.1.6 STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a TOP: 8-1 Example 1 KEY: zero as an exponent | negative exponent | simplfying a power 3. ANS: C PTS: 1 DIF: L2 REF: 8-1 Zero and Negative Exponents OBJ: 8-1.1 Zero and Negative Exponents NAT: ADP J.1.1 | ADP J.1.6 STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a TOP: 8-1 Example 1 KEY: zero as an exponent | negative exponent | simplfying a power 4. ANS: C PTS: 1 DIF: L2 REF: 8-1 Zero and Negative Exponents OBJ: 8-1.1 Zero and Negative Exponents NAT: ADP J.1.1 | ADP J.1.6 STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a TOP: 8-1 Example 2 KEY: zero as an exponent | negative exponent | simplifying an exponential expression 5. ANS: D PTS: 1 DIF: L2 REF: 8-1 Zero and Negative Exponents OBJ: 8-1.1 Zero and Negative Exponents NAT: ADP J.1.1 | ADP J.1.6 STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a TOP: 8-1 Example 2 KEY: negative exponent | simplifying an exponential expression 6. ANS: C PTS: 1 DIF: L3 REF: 8-1 Zero and Negative Exponents OBJ: 8-1.1 Zero and Negative Exponents NAT: ADP J.1.1 | ADP J.1.6 STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a TOP: 8-1 Example 1 KEY: negative exponent | simplifying an exponential expression 7. ANS: A PTS: 1 DIF: L3 REF: 8-1 Zero and Negative Exponents OBJ: 8-1.1 Zero and Negative Exponents NAT: ADP J.1.1 | ADP J.1.6 STA: NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a TOP: 8-1 Example 1 KEY: simplifying an exponential expression | zero as an exponent | simplfying a power 8. ANS: D PTS: 1 DIF: L2 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.1 Multiplying Powers NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-3 Example 1 KEY: multiplying powers with the same base | exponential expression | simplifying an exponential expression 1 ID: A 9. ANS: D PTS: 1 DIF: L2 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.1 Multiplying Powers NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-3 Example 1 KEY: multiplying powers with the same base | exponential expression | simplifying an exponential expression 10. ANS: C PTS: 1 DIF: L2 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.1 Multiplying Powers NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-3 Example 2 KEY: exponential expression | simplifying an exponential expression | multiplying powers with the same base 11. ANS: A PTS: 1 DIF: L2 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.1 Multiplying Powers NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-1 Example 2 KEY: exponential expression | simplifying an exponential expression | multiplying powers with the same base 12. ANS: A PTS: 1 DIF: L2 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.1 Multiplying Powers NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-3 Example 2 KEY: exponential expression | simplifying an exponential expression | multiplying powers with the same base 13. ANS: B PTS: 1 DIF: L3 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.1 Multiplying Powers NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-3 Example 2 KEY: multiplying powers with the same base | exponential expression | simplifying an exponential expression 14. ANS: C PTS: 1 DIF: L4 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.1 Multiplying Powers NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-3 Example 2 KEY: exponential expression | multiplying powers with the same base | simplifying an exponential expression 15. ANS: D PTS: 1 DIF: L2 REF: 8-4 More Multiplication Properties of Exponents OBJ: 8-4.1 Raising a Power to a Power NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-4 Example 1 KEY: raising a power to a power | exponential expression | simplifying an exponential expression 16. ANS: C PTS: 1 DIF: L2 REF: 8-4 More Multiplication Properties of Exponents OBJ: 8-4.1 Raising a Power to a Power NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-4 Example 1 KEY: raising a power to a power | exponential expression | simplifying an exponential expression 2 ID: A 17. ANS: C PTS: 1 DIF: L2 REF: 8-4 More Multiplication Properties of Exponents OBJ: 8-4.1 Raising a Power to a Power NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-4 Example 2 KEY: exponential expression | simplifying an exponential expression | simplifying an expression with powers 18. ANS: D PTS: 1 DIF: L2 REF: 8-4 More Multiplication Properties of Exponents OBJ: 8-4.1 Raising a Power to a Power NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-4 Example 1 KEY: raising a power to a power | exponential expression | simplifying an exponential expression 19. ANS: A PTS: 1 DIF: L2 REF: 8-4 More Multiplication Properties of Exponents OBJ: 8-4.2 Raising a Product to a Power NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-4 Example 3 KEY: raising a product to a power | exponential expression | simplifying an exponential expression 20. ANS: A PTS: 1 DIF: L2 REF: 8-4 More Multiplication Properties of Exponents OBJ: 8-4.2 Raising a Product to a Power NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-4 Example 4 KEY: raising a product to a power | exponential expression | simplifying an exponential expression 21. ANS: A PTS: 1 DIF: L3 REF: 8-4 More Multiplication Properties of Exponents OBJ: 8-4.2 Raising a Product to a Power NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-4 Example 4 KEY: exponential expression | raising a product to a power | simplifying an exponential expression 22. ANS: D PTS: 1 DIF: L2 REF: 8-5 Division Properties of Exponents OBJ: 8-5.1 Dividing Powers With the Same Base NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-5 Example 1 KEY: dividing powers with the same base | exponential expression 23. ANS: A PTS: 1 DIF: L2 REF: 8-5 Division Properties of Exponents OBJ: 8-5.1 Dividing Powers With the Same Base NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-5 Example 1 KEY: dividing powers with the same base | exponential expression 24. ANS: D PTS: 1 DIF: L2 REF: 8-5 Division Properties of Exponents OBJ: 8-5.1 Dividing Powers With the Same Base NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-5 Example 1 KEY: dividing powers with the same base | exponential expression 25. ANS: A PTS: 1 DIF: L2 REF: 8-5 Division Properties of Exponents OBJ: 8-5.1 Dividing Powers With the Same Base NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-5 Example 1 KEY: dividing powers with the same base | exponential expression 3 ID: A 26. ANS: REF: OBJ: STA: KEY: 27. ANS: REF: NAT: TOP: 28. ANS: REF: NAT: TOP: 29. ANS: REF: NAT: TOP: KEY: 30. ANS: REF: NAT: TOP: KEY: 31. ANS: OBJ: STA: TOP: KEY: 32. ANS: OBJ: STA: TOP: KEY: 33. ANS: OBJ: STA: TOP: 34. ANS: OBJ: STA: TOP: KEY: 35. ANS: OBJ: NAT: STA: KEY: C PTS: 1 DIF: L2 8-5 Division Properties of Exponents 8-5.1 Dividing Powers With the Same Base NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1 NJ 4.1.12 B.4 TOP: 8-5 Example 1 dividing powers with the same base | exponential expression A PTS: 1 DIF: L2 8-5 Division Properties of Exponents OBJ: 8-5.2 Raising a Quotient to a Power ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4 8-5 Example 3 KEY: raising a quotient to a power | exponential expression A PTS: 1 DIF: L2 8-5 Division Properties of Exponents OBJ: 8-5.2 Raising a Quotient to a Power ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4 8-5 Example 3 KEY: raising a quotient to a power | exponential expression B PTS: 1 DIF: L3 8-5 Division Properties of Exponents OBJ: 8-5.2 Raising a Quotient to a Power ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4 8-5 Example 4 raising a quotient to a power | simplifying an exponential expression | exponential expression B PTS: 1 DIF: L3 8-5 Division Properties of Exponents OBJ: 8-5.2 Raising a Quotient to a Power ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4 8-5 Example 4 raising a quotient to a power | exponential expression | simplifying an exponential expression B PTS: 1 DIF: L2 REF: 8-1 Zero and Negative Exponents 8-1.2 Evaluating Exponential Expressions NAT: ADP J.1.1 | ADP J.1.6 NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a 8-1 Example 3 negative exponent | simplifying an exponential expression | evaluating exponential expression C PTS: 1 DIF: L3 REF: 8-1 Zero and Negative Exponents 8-1.2 Evaluating Exponential Expressions NAT: ADP J.1.1 | ADP J.1.6 NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a 8-1 Example 3 negative exponent | simplifying an exponential expression | evaluating exponential expression B PTS: 1 DIF: L3 REF: 8-1 Zero and Negative Exponents 8-1.1 Zero and Negative Exponents NAT: ADP J.1.1 | ADP J.1.6 NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a 8-1 Example 1 KEY: simplifying an exponential expression | negative exponent B PTS: 1 DIF: L3 REF: 8-1 Zero and Negative Exponents 8-1.2 Evaluating Exponential Expressions NAT: ADP J.1.1 | ADP J.1.6 NJ 4.1.12 B.2 | NJ 4.1.12 B.4 | NJ 4.3.12 C.1e | NJ 4.3.12 C.1a 8-1 Example 4 evaluating exponential expression | simplfying a power | word problem | problem solving D PTS: 1 DIF: L2 REF: 8-2 Scientific Notation 8-2.1 Writing Numbers in Scientific and Standard Notations NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2 NJ 4.1.12 B.2 TOP: 8-2 Example 1 scientific notation 4 ID: A 36. ANS: OBJ: NAT: STA: KEY: 37. ANS: OBJ: NAT: STA: KEY: 38. ANS: OBJ: NAT: STA: KEY: 39. ANS: OBJ: NAT: STA: KEY: 40. ANS: OBJ: NAT: STA: KEY: 41. ANS: OBJ: NAT: STA: KEY: 42. ANS: OBJ: NAT: STA: KEY: 43. ANS: OBJ: NAT: STA: KEY: 44. ANS: OBJ: NAT: STA: KEY: A PTS: 1 DIF: L2 REF: 8-2 Scientific Notation 8-2.1 Writing Numbers in Scientific and Standard Notations NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2 NJ 4.1.12 B.2 TOP: 8-2 Example 1 scientific notation C PTS: 1 DIF: L2 REF: 8-2 Scientific Notation 8-2.1 Writing Numbers in Scientific and Standard Notations NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2 NJ 4.1.12 B.2 TOP: 8-2 Example 2 scientific notation D PTS: 1 DIF: L2 REF: 8-2 Scientific Notation 8-2.1 Writing Numbers in Scientific and Standard Notations NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2 NJ 4.1.12 B.2 TOP: 8-2 Example 2 scientific notation C PTS: 1 DIF: L2 REF: 8-2 Scientific Notation 8-2.1 Writing Numbers in Scientific and Standard Notations NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2 NJ 4.1.12 B.2 TOP: 8-2 Example 3 scientific notation | standard notation A PTS: 1 DIF: L2 REF: 8-2 Scientific Notation 8-2.1 Writing Numbers in Scientific and Standard Notations NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2 NJ 4.1.12 B.2 TOP: 8-2 Example 3 scientific notation | standard notation B PTS: 1 DIF: L2 REF: 8-2 Scientific Notation 8-2.2 Using Scientific Notation NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2 NJ 4.1.12 B.2 TOP: 8-2 Example 5 standard notation | scientific notation | ordering C PTS: 1 DIF: L2 REF: 8-2 Scientific Notation 8-2.2 Using Scientific Notation NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2 NJ 4.1.12 B.2 TOP: 8-2 Example 6 scientific notation | multiply a number using scientific notation B PTS: 1 DIF: L2 REF: 8-2 Scientific Notation 8-2.2 Using Scientific Notation NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2 NJ 4.1.12 B.2 TOP: 8-2 Example 6 scientific notation | multiply a number using scientific notation C PTS: 1 DIF: L3 REF: 8-2 Scientific Notation 8-2.2 Using Scientific Notation NAEP 2005 N1d | NAEP 2005 N1f | ADP I.1.5 | ADP I.2.2 NJ 4.1.12 B.2 TOP: 8-2 Example 6 scientific notation | multiply a number using scientific notation | word problem | problem solving 5 ID: A 45. ANS: B PTS: 1 DIF: L2 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.2 Working With Scientific Notation NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-3 Example 3 KEY: multiply a number using scientific notation | scientific notation | multiplying powers with the same base | exponential expression 46. ANS: A PTS: 1 DIF: L3 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.2 Working With Scientific Notation NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-3 Example 3 KEY: multiply a number using scientific notation | scientific notation | multiplying powers with the same base | exponential expression 47. ANS: B PTS: 1 DIF: L3 REF: 8-4 More Multiplication Properties of Exponents OBJ: 8-4.2 Raising a Product to a Power NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-3 Example 4 KEY: scientific notation | raising a product to a power | multiply a number using scientific notation | simplifying an exponential expression 48. ANS: C PTS: 1 DIF: L3 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.1 Multiplying Powers NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 KEY: multiplying powers with the same base | simplifying an exponential expression | exponential expression 49. ANS: D PTS: 1 DIF: L3 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.1 Multiplying Powers NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 KEY: multiplying powers with the same base | simplifying an exponential expression | exponential expression 50. ANS: D PTS: 1 DIF: L3 REF: 8-3 Mulitplication Properties of Exponents OBJ: 8-3.2 Working With Scientific Notation NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 KEY: scientific notation | word problem | problem solving | multiply a number using scientific notation 51. ANS: D PTS: 1 DIF: L4 REF: 8-4 More Multiplication Properties of Exponents OBJ: 8-4.2 Raising a Product to a Power NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-4 Example 5 KEY: raising a product to a power | scientific notation | problem solving | word problem | simplifying an exponential expression | volume | sphere | multi-part question 52. ANS: B PTS: 1 DIF: L3 REF: 8-5 Division Properties of Exponents OBJ: 8-5.1 Dividing Powers With the Same Base NAT: ADP I.1.5 | ADP I.2.2 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-5 Example 2 KEY: dividing powers with the same base | exponential expression | scientific notation | problem solving | word problem 6 ID: A 53. ANS: B PTS: 1 DIF: L4 REF: 8-4 More Multiplication Properties of Exponents OBJ: 8-4.1 Raising a Power to a Power NAT: ADP I.1.5 | ADP J.1.1 STA: NJ 4.1.12 B.4 TOP: 8-4 Example 3 KEY: raising a power to a power | exponential expression | simplifying an expression with powers | reasoning | always sometimes never 54. ANS: A PTS: 1 DIF: L2 REF: 8-6 Geometric Sequences OBJ: 8-6.1 Geometric Sequences NAT: NAEP 2005 A1a | NAEP 2005 A1i | ADP I.1.2 STA: NJ 4.3.12 A.1a TOP: 8-6 Example 1 KEY: geometric sequence | common ratio 55. ANS: C PTS: 1 DIF: L2 REF: 8-6 Geometric Sequences OBJ: 8-6.1 Geometric Sequences NAT: NAEP 2005 A1a | NAEP 2005 A1i | ADP I.1.2 STA: NJ 4.3.12 A.1a TOP: 8-6 Example 1 KEY: geometric sequence | common ratio 56. ANS: B PTS: 1 DIF: L2 REF: 8-6 Geometric Sequences OBJ: 8-6.1 Geometric Sequences NAT: NAEP 2005 A1a | NAEP 2005 A1i | ADP I.1.2 STA: NJ 4.3.12 A.1a TOP: 8-6 Example 2 KEY: geometric sequence | common ratio 57. ANS: B PTS: 1 DIF: L2 REF: 8-6 Geometric Sequences OBJ: 8-6.1 Geometric Sequences NAT: NAEP 2005 A1a | NAEP 2005 A1i | ADP I.1.2 STA: NJ 4.3.12 A.1a TOP: 8-6 Example 3 KEY: arithmetic sequence | geometric sequence | common ratio | common difference 58. ANS: C PTS: 1 DIF: L2 REF: 8-6 Geometric Sequences OBJ: 8-6.2 Using a Formula NAT: NAEP 2005 A1a | NAEP 2005 A1i | ADP I.1.2 STA: NJ 4.3.12 A.1a TOP: 8-6 Example 4 KEY: geometric sequence | common ratio | formula 59. ANS: C PTS: 1 DIF: L2 REF: 8-7 Exponential Functions OBJ: 8-7.1 Evaluating Exponential Functions NAT: NAEP 2005 A1e | ADP J.2.3 | ADP J.4.7 | ADP J.5.4 STA: NJ 4.1.12 B.4 | NJ 4.3.12 B.1 TOP: 8-7 Example 1 KEY: exponential function | function 60. ANS: C PTS: 1 DIF: L2 REF: 8-7 Exponential Functions OBJ: 8-7.1 Evaluating Exponential Functions NAT: NAEP 2005 A1e | ADP J.2.3 | ADP J.4.7 | ADP J.5.4 STA: NJ 4.1.12 B.4 | NJ 4.3.12 B.1 TOP: 8-7 Example 1 KEY: exponential function | function 7