Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name ________________________________________ Date __________________ Class__________________ LESSON 5-3 Reading Strategy Compare and Contrast The addition or subtraction of rational expressions can be compared to the addition or subtraction of fractions. As with fractions, in order to add or subtract rational expressions, the denominators must be the same. The least common multiple of the polynomials is the least common denominator (LCD). Find the LCD. Rename each term using the LCD. Add the numerators. Add Fractions Add Rational Expressions 3 1 4 6 5 x 1 2 2x x 12 2x2 9 2 12 12 5x 2x + 2 + 2 2x 2x 2 11 12 7x 2 2x 2 Find the least common multiple for each pair. 1. 2x6 and 6x 2. 10xy and 5x4y3 3. (x 8) (x 1) and (x 1) _________________________________ _________________________________ _________________________________ 2 _________________________________ 4. x 5x 6 and x 3 A complex fraction is an expression that contains a fraction in the 8x 3x 5 4x , the denominator, , or both 2 numerator, . To simplify, x 3 13 x 1 9x x2 x 3 x2 treat it as a division of rational expressions. 4 x 1 4 x 1 x 3 4 x 1 4 x 1 x2 1 2 x 3 x 1 x 1 x 1 x 3 x 3 x 1 x 1 Write the division expression and the corresponding multiplication expression you could use to simplify the complex fraction. 8x x 3 ___________________________________________ 5. x2 2 2 x 1 ___________________________________________ 6. x 1 x3 Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 5-26 Holt McDougal Algebra 2 3. 4x 2 − 2x − 4 1 ; x ≠ − and x ≠ 4 2 3 3 x − 11x − 4 2. 1 2 3 + + x x+2 x−2 4. 3x − 7 ; x ≠ 5, x ≠ 2 2 x − 7 x + 10 3. 5 3 1 + − x +1 x − 2 x + 3 5. 8x 2 + 4x − 3 1 ;x ≠± 2 2 8x − 2 4. −1 3 2 − + 2 x − 1 ( x − 1) x−2 6. 3 x 2 − 20 x − 10 ; x ≠ −2, x ≠ 3, x ≠ 5 x 3 − 6 x 2 − x + 30 7. x−2 x2 − 8 9. x 2 − x − 42 x 2 − 3 x − 10 10. 8. Problem Solving 1. a. 5 11x + 22 b. 2d c. e ( 2x − 3 ) x 3 − 4 x 2 − 11x − 6 11. x 2 − 3x − 4 x3 + 3x 4x − 3 ; −2, 2 x2 − 4 2. 3x − 4 ; −3 x+3 3. −3 x − 5 ;1 x −1 4. 3 x + 10 7 ; − 3x + 7 3 5. 3 ;3 x −3 6. 2x + 9 ; ±1 x2 − 1 7. ( x − 1 + 3x 2 − 6x ( x + 2)( x − 2) )= 2d d d + 6 3 d. Vicki is correct. Possible answer: Lorena calculated the average speed as if it took the same amount of time for each leg of the trip. Vicki took into consideration the time for each leg. Reteach 1. d d + 6 3 2. 4.8 knots 3. D 4. C 5. B 6. D Reading Strategies 1. 6x6 2. 10x4y3 3. (x − 8)(x + 1) 3x 2 − 5x − 1 ( x + 2)( x − 2) 5. 8x x 8x ; ÷ ⋅ 22 x −3 2 x −3 x 6. 2 x +1 2 x3 ⋅ ÷ 3 ; x −1 x −1 x +1 x x ≠ −2, 2 4x − 1 3 ⎛ x + 2⎞ + 8. ⎜ ⎟ ( x + 2)( x + 1) x + 1 ⎝ x + 2 ⎠ 4. (x − 3)(x − 2) 2 4x − 1 + 3x + 6 ( x + 2)( x + 1) 7x + 5 ( x + 2)( x + 1) x ≠ −2, −1 9. (x − 3)(x + 3)(x + 2) Challenge 1. 5 2 − x +1 x + 4 Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A58 Holt McDougal Algebra 2