Download Derivatives of Trigonometric Functions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section 3.3 Derivatives of Trigonometric Functions
2015 Kiryl Tsishchanka
Derivatives of Trigonometric Functions
THE DERIVATIVE OF THE SINE AND COSINE FUNCTIONS: We have
d
(sin x) = cos x
dx
or
(sin x)′ = cos x
d
(cos x) = − sin x
dx
or
(cos x)′ = − sin x
and
Proof: We have
sin(x + h) − sin x
h→0
h
(sin x)′ = lim
[We use sin(α + β) = sin α cos β + cos α sin β]
sin x cos h − sin x cos x sin h
sin x cos h + cos x sin h − sin x
= lim
+
= lim
h→0
h→0
h
h
h
sin x(cos h − 1)
cos h − 1
sin h
sin h
= lim
= sin x lim
+ cos x ·
+ cos x lim
h→0
h→0
h→0 h
h
h
h
= sin x · 0 + cos x · 1 = cos x
In the same way we prove that (cos x)′ = − sin x.
EXAMPLE: If f (x) = 3 sin x − 4 cos x, then
f ′ (x) = (3 sin x − 4 cos x)′ = 3(sin x)′ − 4(cos x)′ = 3 cos x − 4(− sin x) = 3 cos x + 4 sin x
EXAMPLE: If f (x) = sin x, then
f ′ (x) = cos x
f ′′ (x) = (cos x)′ = − sin x
f ′′′ (x) = (− sin x)′ = − cos x
f ′′′′ (x) = (− cos x)′ = −(− sin x) = sin x
Therefore
f (x) = f (4) (x) = f (8) (x) = f (12) (x) = f (16) (x) = . . . = sin x
f ′ (x) = f (5) (x) = f (9) (x) = f (13) (x) = f (17) (x) = . . . = cos x
f ′′ (x) = f (6) (x) = f (10) (x) = f (14) (x) = f (18) (x) = . . . = − sin x
f ′′′ (x) = f (7) (x) = f (11) (x) = f (15) (x) = f (19) (x) = . . . = − cos x
For instance, it immediately follows from here that
f (2010) (x) = f (2008+2) (x) = f (4·502+2) = f ′′ (x) = − sin x
1
Section 3.3 Derivatives of Trigonometric Functions
2015 Kiryl Tsishchanka
DIFFERENTIATION RULES:
c′ = 0
(xn )′ = nxn−1
[cf (x)]′ = cf ′ (x)
(sin x)′ = cos x
(csc x)′ = − csc x cot x
[f (x) ± g(x)]′ = f ′ (x) ± g ′ (x)
(cos x)′ = − sin x (sec x)′ = sec x tan x
(tan x)′ = sec2 x
(cot x)′ = − csc2 x
[f (x)g(x)]′ = f ′ (x)g(x) + f (x)g ′ (x)
′
f (x)
f ′ (x)g(x) − f (x)g ′ (x)
=
g(x)
[g(x)]2
sec x
(sec x)′
???
′
EXAMPLE: If f (x) =
, then f (x) =
WRONG!!!
1 + tan x
(1 + tan x)′
′
sec x
(sec x)′ (1 + tan x) − sec x(1 + tan x)′
′
f (x) =
=
1 + tan x
(1 + tan x)2
=
sec x tan x(1 + tan x) − sec x sec2 x
sec x tan x(1 + tan x) − sec x(1′ + (tan x)′ )
=
(1 + tan x)2
(1 + tan x)2
sec x(tan x + tan2 x − sec2 x)
sec x(tan x − 1)
=
= [tan2 x − sec2 x = −1] =
2
(1 + tan x)
(1 + tan x)2
EXAMPLES: Differentiate
1. f (x) = 3x − 5
2. f (x) =
√
x
1
3. f (x) = √
x
√
4. f (x) = −3x−8 + 2 x
5. f (x) = (x3 + 7x2 − 8)(2x−3 + x−4 )
6. f (x) =
3x + 2
x+1
(x−5 + 1)
7. f (x) = x3 sin x − 5 cos x
8. f (x) =
sin x + sec x
1 + x tan x
9. f (x) =
sin x
1 + cos x
2
Section 3.3 Derivatives of Trigonometric Functions
2015 Kiryl Tsishchanka
Solutions:
1. (3x − 5)′ = (3x)′ − 5′ = 3x′ − 5′ = 3 · 1 − 0 = 3
′ 1
√
1
2. ( x)′ = x1/2 = x1/2−1 = x−1/2
2
2
′
′ ′
1
1
1
1
3. √
= x−1/2 = − x−1/2−1 = − x−3/2
=
1/2
x
2
2
x
√
1
4. (−3x−8 + 2 x)′ = −3(x−8 )′ + 2(x1/2 )′ = −3(−8)x−8−1 + 2 x−1/2 = 24x−9 + x−1/2
2
51 . [(x3 + 7x2 − 8)(2x−3 + x−4 )]′ = (x3 + 7x2 − 8)′ (2x−3 + x−4 ) + (x3 + 7x2 − 8)(2x−3 + x−4 )′
= (3x2 + 14x)(2x−3 + x−4 ) + (x3 + 7x2 − 8)(−6x−4 − 4x−5 )
52 . [(x3 + 7x2 − 8)(2x−3 + x−4 )]′ = (2 + 15x−1 + 7x−2 − 16x−3 − 8x−4 )′
= 2′ + 15(x−1 )′ + 7(x−2 )′ − 16(x−3 )′ − 8(x−4 )′
= 0 + 15 · (−1)x−2 + 7 · (−2)x−3 − 16 · (−3)x−4 − 8 · (−4)x−5
= −15x−2 − 14x−3 + 48x−4 + 32x−5
′ ′
3x + 2
3x + 2
3x + 2
−5
−5
(x + 1) =
(x−5 + 1)′
(x + 1) +
x+1
x+1
x+1
3x + 2
(3x + 2)′ (x + 1) − (3x + 2)(x + 1)′ −5
(x + 1) +
(x−5 + 1)′
=
(x + 1)2
x+1
3(x + 1) − (3x + 2) −5
x−5 + 1
3x + 2
3x + 2
−6
=
(−5x ) =
(−5x−6 )
(x + 1) +
+
(x + 1)2
x+1
(x + 1)2
x+1
6.
7. (x3 sin x − 5 cos x)′ = (x3 sin x)′ − 5(cos x)′ = (x3 )′ sin x + x3 (sin x)′ − 5(cos x)′
= 3x2 sin x + x3 cos x + 5 sin x
8.
9.
sin x + sec x
1 + x tan x
sin x
1 + cos x
′
′
=
(sin x + sec x)′ (1 + x tan x) − (sin x + sec x)(1 + x tan x)′
(1 + x tan x)2
=
[(sin x)′ + (sec x)′ ](1 + x tan x) − (sin x + sec x)(x′ tan x + x(tan x)′ )
(1 + x tan x)2
=
(cos x + sec x tan x)(1 + x tan x) − (sin x + sec x)(tan x + x sec2 x)
(1 + x tan x)2
=
cos x(1 + cos x) − sin x(− sin x)
(sin x)′ (1 + cos x) − sin x(1 + cos x)′
=
(1 + cos x)2
(1 + cos x)2
=
cos x + 1
1
cos x + cos2 x + sin2 x
=
=
2
2
(1 + cos x)
(1 + cos x)
1 + cos x
3
Section 3.3 Derivatives of Trigonometric Functions
2015 Kiryl Tsishchanka
Appendix
cos h − 1
0 A
(cos h − 1)(cos h + 1) A
cos2 h − 1
lim
=
= lim
= lim
h→0
h→0
h→0 h(cos h + 1)
h
0
h(cos h + 1)
A
−(1 − cos2 h)
h→0 h(cos h + 1)
= lim
T
− sin2 h
h→0 h(cos h + 1)
= lim
A
= lim
h→0
C
sin h − sin h
·
h
cos h + 1
sin h
− sin h
· lim
h→0 h
h→0 cos h + 1
= lim
− sin h
h→0 cos h + 1
C
= 1 · lim
DSP
=
=
− sin 0
1 + cos 0
0
1+1
=0
4
Related documents