Download Lecture Notes - Personal WWW Pages

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
University of Strathclyde
Department of Mathematics & Statistics
Circular Functions — Trigonometry
Summer School Lecture Notes
1
Basic Definitions
OAB is a triangle with a right angle at A.
b =θ
AOB
AB
opposite
=
OB
hypotenuse
B
OA
adjacent
=
OB
hypotenuse
(
)
AB
opposite
sin θ
tan θ :=
=
=
OA
adjacent
cos θ
use
n
ote
hyp
cos θ :=
cot θ :=
O
1
tan θ
REMINDER: SOH CAH TOA
1
θ
adjacent
opposite
sin θ :=
A
2
Summer School: Circular Functions
2
Circular Functions
Y
circle, radius r
From the basic definitions,
sin θ =
opp
y
=
hyp
r
B(x,y)
ϕ
adj
x
cos θ =
=
hyp
r
(
)
opp
y
sin θ
tan θ =
=
=
adj
x
cos θ
r
y
θ
x
O
A
x
y
, cos φ = so we have
r
r
x
sin(90◦ − θ) = sin φ = = cos θ
r
Now φ = 90◦ − θ and sin φ =
cos(90◦ − θ) = cos φ =
y
= sin θ.
r
These are Complementary Angles. Also,
tan(90◦ − θ) = tan φ =
3
x
= cot θ
y
Elementary Angles
When θ = 0◦ : y = 0, x = r
sin(0◦ ) =
y
= 0,
r
cos(0◦ ) =
x
y
= 1, tan(0◦ ) = = 0
r
x
and using complementary angles
sin(90◦ ) = sin(90◦ − 0◦ ) = cos(0◦ ) = 1
cos(90◦ ) = cos(90◦ − 0◦ ) = sin(0◦ ) = 0
tan(90◦ ) = tan(90◦ − 0◦ ) =
1
= undefined
0
X
3
Summer School: Circular Functions
3.1
Isosceles Triangle
B
b + OBA
b = 90◦
AOB
45
b = OBA
b
AOB
o
2a
a
a
A
b = OBA
b = 45◦
⇒ AOB
OB 2 = OA2 + AB 2 = 2a2
√
⇒ OB = 2 a
45
o
O
a
1
cos 45◦ = sin 45◦ = √
=√
2a
2
tan 45◦ = 1
3.2
Equilateral Triangle
B
OB = BC = CO = 2l
o
30
OA = AC = l
Then OB 2 = OA2 + AB 2 ⇒
4l = l + AB ⇒ AB =
2
2
2
√
2l
3l
3l
b = OBC
b = B CO
b = 60◦
C OB
o
b = ABC
b = 30◦
OBA
60
O
l
Hence
1
= cos 60◦
2
√
3
= sin 60◦
cos 30◦ =
2
sin 30◦ =
1
tan 30◦ = √
3
√
tan 60◦ = 3
A
C
4
Summer School: Circular Functions
3.3
Table of Values (IMPORTANT)
0◦ 30◦ 45◦ 60◦ 90◦
√
1
1
3
√
sin θ 0
1
2
2
2
√
3 1
1
√
cos θ 1
0
2
2 2
√
1
tan θ 0 √
1
3 −
3
θ
3.4
3.4.1
Extension to other angles
90◦ < θ ≤ 180◦
Now x < 0, y > 0 and r > 0.
Y
We define
sin θ =
cos θ =
y
>0
r
B
x
<0
r
y
r
θ
tan θ =
y
<0
x
A
x
O
b = 180◦ − θ, so
We also have AOB
sin(180◦ − θ) = sin θ
cos(180◦ − θ) = − cos θ
X
5
Summer School: Circular Functions
3.4.2
180◦ < θ ≤ 270◦
Y
Here x < 0, y < 0, r > 0
sin θ =
y
<0
r
cos θ =
x
<0
r
A
θ
x
X
O
y
tan θ = > 0
x
y
r
B
3.4.3
270◦ < θ ≤ 360◦
Y
Here x > 0, y < 0, r > 0
sin θ =
y
<0
r
cos θ =
x
>0
r
tan θ =
y
<0
x
O
θ
x
r
A
y
B
X
6
Summer School: Circular Functions
3.5
Rule of Signs
Y
What’s positive?
This shows that
st
nd
1 Quad
2 Quad
sin θ > 0 in the 1st and 2nd quadrants
sin
all
cos θ > 0 in the 1st and 4th quadrants
X
tan
tan θ > 0 in the 1st and 3rd quadrants
3.6
cos
rd
th
3 Quad
4 Quad
Negative Angles
Angles are positive when
measured anti-clockwise and
negative
when
Y
measured
clockwise.
y
sin(−θ) = − = − sin θ
r
x
= cos θ
r
y
tan(−θ) = − = − tan θ
x
cos(−θ) =
r
θ
−θ
y
X
x
r
−y
7
Summer School: Circular Functions
4
Degrees and Radians
The angle θ in radians is
θ=
length of arc AB
r
B
(This does not depend on r)
r
θ
The circumference is 2πr. Hence a
A
r
◦
complete rotation (360 ) is
2πr
= 2π radians
r
(
◦
2π radians ≡ 360 ⇒ 1 radian ≡
180
π
)◦
π
radians ≡ 1◦
180
4.1
Table of degrees and radians
Degrees
0◦
30◦
45◦
60◦
90◦
120◦
135◦
150◦
Radians
0
π/6
π/4
π/3
π/2
2π/3 3π/4
5π/6
Degrees
180◦
210◦
225◦
240◦
270◦
300◦
330◦
Radians
π
315◦
7π/6 5π/4 4π/3 3π/2 5π/3 7π/4 11π/6
Now look back at the table of values and make sure you know exact values for radians!!!
NOTE: Be careful to include
◦
when referring to degrees.
8
Summer School: Circular Functions
5
Pythagoras’ Theorem
Pythagoras’ Theorem says
x2 + y 2 = r 2
Dividing by r2 , we get
r
2
y
2
x
y
+ 2 =1
2
r
r
θ
and using the definition of sin θ and cos θ:
x
cos2 θ + sin2 θ = 1
6
Graphs
The graph of sin θ has a maxi-
sin(θ)
mum value of 1 when θ takes the
1
values
···
−3π π 5π
, ,
···
2 2 2
0.5
It takes the minimum value of
−1 when θ takes the values
···
−π 3π
, ,···
2 2
0
−0.5
and is equal to 0 when θ takes
−1
the values
−6
0, ±π, ±2π, · · ·
The graph of sin θ has a period
of 2π.
−4
−2
0
θ
2
4
6
9
Summer School: Circular Functions
The graph of cos θ has a maxicos(θ)
mum value of 1 when θ takes the
values
1
0, ±2π, ±4π · · ·
0.5
It takes the minimum value of
−1 when θ takes the values
±π, ±3π, · · ·
0
−0.5
and is equal to 0 when θ takes
the values
−1
−6.2832
π 3π 5π
± ,± ,± ,···
2
2
2
−3.1416
0
θ
3.1416
The graph of cos θ has a period
of 2π.
Note the similarity between the graphs of sin θ and cos θ.
tan(θ)
6
The graph of tan θ takes the
value 0 when θ takes the values
0, ±π, ±2π, ±3π · · ·
It is undefined when θ takes the
values
π 3π 5π
± ,± ,± ,···
2
2
2
The graph of tan θ has a period
of π.
4
2
0
−2
−4
−6
−4.7124
−1.5708
θ
1.5708
4.7124
6.2832
10
Summer School: Circular Functions
7
Compound Angles
P
α
L
α
N
Q
β
α
O
K
M
b is a right angle, so LN
bQ = α
Triangles OQK, P QN are similar, so QPbN = α. N LP
PK
P L + LK
LK + P L
NM + P L
=
=
=
PO
PO
PO
PO
N M ON
PL PN
=
·
+
·
ON P O P N P O
= sin α cos β + cos α sin β
sin(α + β) =
Hence
sin(α + β) = sin α cos β + cos α sin β
It can also be shown that
cos(α + β) = cos α cos β − sin α sin β
sin(α − β) = sin α cos β − cos α sin β
cos(α − β) = cos α cos β + sin α sin β
tan(α + β) =
tan α + tan β
1 − tan α tan β
tan(α − β) =
tan α − tan β
1 + tan α tan β
Summer School: Circular Functions
Example 7.1 Find the value of sin(75◦ )
sin(75◦ ) = sin(45◦ + 30◦ )
= sin 45◦ cos 30◦ + cos 45◦ sin 30◦
√
√
1 1
1+ 3
1 3
= √
+√
= √
2 2
22
2 2
Example 7.2 Find the value of cos(15◦ )
cos(15◦ ) = cos(45◦ − 30◦ )
= cos(45◦ ) cos(30◦ ) + sin(45◦ ) sin(30◦ )
√
√
1 3
1 1
1+ 3
= √
+√
= √
2 2
22
2 2
Example 7.3 Find the value of tan(105◦ )
tan(105◦ ) = tan(60◦ + 45◦ )
tan(60◦ ) + tan(45◦ )
=
1 − tan(60◦ ) tan(45◦ )
√
√
√
3+1
3+1 1+ 3
√ =
√ ×
√
=
1− 3
1− 3 1+ 3
√
√
3+3+1+ 3
√
√
=
1+ 3− 3−3
√
√
2 3+4
=
=− 3−2
−2
8
Double Angles
From Section 7, we have
sin(2a) = 2 sin a cos a
cos(2a) = cos2 a − sin2 a
We can use cos2 a + sin2 a = 1 to obtain alternative formulae for cos(2a):
cos(2a) = cos2 a − sin2 a = cos2 a − (1 − cos2 a) = 2 cos2 a − 1
cos(2a) = cos2 a − sin2 a = (1 − sin2 a) − sin2 a = 1 − 2 sin2 a
11
12
Summer School: Circular Functions
(
)
1◦
Example 8.1 Find the value of sin 22
.
2
Let a = 22
9
1◦
then consider cos(2a).
2
1
√ = cos(45◦ )
2
(
)
1◦
2
⇒ 2 sin 22
2
(
)
1◦
2
⇒ sin 22
2
(
)
1◦
⇒
sin 22
2
(
)
1◦
= 1 − 2 sin 22
2
√
1
2−1
=1− √ = √
2
2
√
2−1
= √
2 2
√√
2−1
√
=
2 2
2
Secant, Cosecant
We define
sec θ =
1
cos θ
and
csc θ =
1
sin θ
Recall that cos2 θ + sin2 θ = 1.
Divide by cos2 θ to get
1 + tan2 θ = sec2 θ
Divide by sin2 θ to get
cot2 θ + 1 = csc2 θ
10
Identities
Example 10.1 Show that
cos θ
1 − sin θ
=
1 + sin θ
cos θ
cos θ(1 − sin θ)
cos θ(1 − sin θ)
cos θ(1 − sin θ)
1 − sin θ
cos θ
=
=
=
=
2
2
1 + sin θ
(1 + sin θ)(1 − sin θ)
cos θ
cos θ
1 − sin θ
Example 10.2 Show that 1 + sin(2θ) = (cos θ + sin θ)2
1 + sin(2θ) = cos2 θ + sin2 θ + 2 sin θ cos θ
= cos2 θ + 2 cos θ sin θ + sin2 θ
= (cos θ + sin θ)2
13
Summer School: Circular Functions
Example 10.3 Show that
sin(2θ) − cos(2θ) + 1
= tan θ
sin(2θ) + cos(2θ) + 1
sin(2θ) − cos(2θ) + 1
2 sin θ cos θ − (1 − 2 sin2 θ) + 1
=
sin(2θ) + cos(2θ) + 1
2 sin θ cos θ + (2 cos2 θ − 1) + 1
2 sin θ cos θ + 2 sin2 θ
=
2 sin θ cos θ + 2 cos2 θ
sin θ(cos θ + sin θ)
=
cos θ(sin θ + cos θ)
sin θ
=
= tan θ.
cos θ
11
Pythagorean Triples
A set of three positive integers x, y, z such that
x2 + y 2 = z 2
is called a Pythagorean Triple.
Examples are {3, 4, 5}, {5, 12, 13}, {7, 24, 25}, {8, 15, 17}, {9, 40, 41}, {11, 60, 61}, {12, 35, 37},
{13, 84, 85}, {15, 112, 113}, {16, 63, 65}, {17, 144, 145}, {19, 180, 181}, {20, 21, 29}, {20, 99, 101}.
Example 11.1 If sin θ =
15
, what is
17
B
cos θ?
Hint: draw a triangle! From diagram
BC = 15, AB = 17
17
15
Hence
AC 2 = 172 −152 = 289−225 = 64 = 82
AC
8
cos θ =
=
AB
17
A
θ
8
C
14
Summer School: Circular Functions
Example 11.2 If sin α =
5
24
and cos β = , find tan(α − β)
13
25
13
25
5
α
7
β
24
12
tan α − tan β
1 + tan α tan β
7
5
−
12 24 = 5 × 24 − 7 × 12
=
5 7
12 × 24 + 5 × 7
1+
·
12 24
120 − 84
36
=
=
288 + 35
323
tan(α − β) =
12
Product Formulae
Recall that
sin(α + β) = sin α cos β + cos α sin β
sin(α − β) = sin α cos β − cos α sin β
⇒ sin(α + β) + sin(α − β) = 2 sin α cos β
p+q
p−q
Put α + β = p, α − β = q ⇒ α =
,β =
to get
2
2
(
)
(
)
p+q
p−q
sin p + sin q = 2 sin
cos
2
2
(
cos p + cos q = 2 cos
(
cos p − cos q = 2 sin
Example 12.1
p+q
2
p+q
2
(
◦
◦
sin 105 + sin 15
)
(
cos
)
(
sin
p−q
2
q−p
2
)
)
)
( ◦)
120◦
90
= 2 sin
cos
2
2
◦
◦
= 2 sin 60 cos√
45
√
3 1
3
√ =
= 2
2 2
2
15
Summer School: Circular Functions
Example 12.2
sin 105◦ − sin 15◦ = sin 105◦ + sin(−15◦ )
( ◦)
(
)
120◦
90
= 2 sin
cos
2
2
◦
◦
= 2 sin 45 cos 60
1 1
1
= 2√
=√
22
2
Example 12.3
(
◦
◦
cos 15 − cos 105
)
( ◦)
120◦
90
= 2 sin
sin
2
2
◦
◦
= 2 sin 60 sin 45
√
√
3 1
3
√ =√
= 2
2 2
2
Example 12.4
(
)
(
)
5x + x
5x − x
2 sin
cos
sin(5x) + sin x
2
2
(
)
(
)
=
5x + x
5x − x
cos(5x) + cos x
2 cos
cos
2
2
sin(3x)
=
= tan(3x)
cos(3x)
Product formulae can also be re-written in the form
1
sin α cos β = {sin(α + β) + sin(α − β)}
2
1
cos α cos β = {cos(α + β) + cos(α − β)}
2
1
sin α sin β = {cos(α − β) − cos(α + β)}
2
Example 12.5
(
)
( ◦)
)
(
)]
[ (
1◦
1
1
1◦
1◦
1◦
1◦
cos 37
cos 7
=
+ cos 37 − 7
cos 37 + 7
2
2
2
2
2
2
2
1
=
{cos(45◦ ) + cos(30◦ )}
2[
√ ] √
√
1 1
3
2+ 3
√ +
=
=
2
2
4
2
16
Summer School: Circular Functions
Example 12.6
)
)
)
( ◦)
(
(
1◦
1◦
1◦
1
1◦
1◦
2 sin 37
cos 7
= sin 37 + 7
+ sin 37 − 7
2
2
2
2
2
2
◦
◦
= sin(45 ) + sin(30 )
√
1
1
2+1
= √ + =
2
2 2
(
13
Trigonometric Equations
Question: Given a value c of sin(θ), what is θ?
1
Example 13.1 Suppose sin(θ) = :
2
sin(θ)
1
0.5
0
−0.5
−1
−6.2832
−3.1416
0
3.1416
θ
6.2832
9.4248
12.5664
1
There are infinitely many values of θ for which sin(θ) = , for example
2
θ=
π 5π
π
5π
,
, 2π + , 2π +
,...
6 6
6
6
In general
θ=
π
+ 2kπ,
6
θ=
5π
+ 2kπ,
6
k = 0, ±1, ±2, ±3, . . .
Because of these endless answers we are usually asked to find values of θ within a certain
range.
17
Summer School: Circular Functions
Solving for θ ∈ [0, 2π]
13.1
Given we want to solve, for θ ∈ [0, 2π],
trig f unction(θ) = c
we first solve
trig f unction(θ̂) = |c|
i.e. for positive c.
Here trig f unction is sin, cos or tan.
Y
nd
2
st
Quad
1 Quad
sin
all
π−θ
rd
3
π
). We
2
then refer to our ’Rules of Signs’ from
This gives an acute angle (θ̂ <
section 3.5. So all of our functions are
θ
π+θ
2π − θ
tan
cos
positive in two quadrants and negative in
X
two quadrants. This gives, at most, two
values for θ ∈ [0, 2π]. This process is
th
Quad
4 Quad
best seen in an example.
cos(θ)
Example 13.2 Find all the solutions for
x ∈ [0, 2π] of
1
2 cos2 x − 3 cos x + 1 = 0
0.5
Factorise: (2 cos x − 1)(cos x − 1) = 0
0
1st
1
cos x = ,
2
π
x̂ = ,
3
π
x= ,
3
cos x = 1
−0.5
x̂ = 0
1st
x=0
−1
0
4th
x = 2π−
5π
π
=
,
3
3
4th
x = 2π−0 = 2π
1.5708
3.1416
θ
4.7124
6.2832
18
Summer School: Circular Functions
Example 13.3 Find x ∈ [0, 2π] for which
cos(2x) − 3 cos x + 2 = 0
Put cos(2x) = 2 cos2 x − 1 to obtain
2 cos2 x − 3 cos x + 1 = 0
See previous example.
Example 13.4 Find x ∈ [0, 2π] for which
sin(θ)
1
sin x − 2 cos2 x + 2 = 0
0.5
Put cos2 x = 1 − sin2 x:
sin x − 2(1 − sin2 x) + 2 = 0
2 sin2 x + sin x = 0
1
sin x(sin x + ) = 0
2
sin x = 0,
x̂ = 0,
1st
x = 0 or 2π,
2nd
x = π−0 = π,
sin x = −
1
2
π
x̂ =
6
3rd
4th
π
7π
=
6
6
π
11π
x = 2π− =
6
6
x = π+
0
−0.5
−1
0
1.5708
3.1416
θ
4.7124
6.2832
4
x 10
19
Summer School: Circular Functions
Example 13.5 Solve, for x ∈ [0, 2π]
cos2 x − sin2 x − cos x + 1 = 0
cos(θ)
1
Put sin2 x = 1 − cos2 x to obtain
cos2 x − (1 − cos2 x) − cos x + 1 = 0
0.5
2 cos2 x − cos x = 0
0
cos x(2 cos x − 1) = 0
cos x = 0,
x̂ =
1st
4th
14
x=
π
,
2
cos x =
x̂ =
π
,
2
x = 2π−
π
3π
=
,
2
2
1
2
−0.5
π
3
−1
π
3
1st
x=
4th
x = 2π−
0
1.5708
3.1416
θ
4.7124
π
5π
=
3
3
Inverse Functions
We have seen in the previous section that there are an infinite number of solutions, x, to
equations such as
sin x = c
where x is an angle and c is a constant.
[ π π]
with sin(x) = c: This unique
If we restrict c to c ∈ [−1, 1] there is a unique x ∈ − ,
2 2
value is the inverse sine of c. We write
x = sin−1 c or x = arcsin c
Similarly, for each value of c ∈ [−1, 1] there is a unique x ∈ [0, π] with cos(x) = c: This x is
the inverse cosine function
x = cos−1 c or x = arccos c
( π π)
And again, for each c ∈ (−∞, ∞) there is a unique x ∈ − ,
with tan(x) = c: This x
2 2
is the inverse tangent function
x = tan−1 c or x = arctan c
6.2832
20
Summer School: Circular Functions
Note that sin−1 (sin α) = α and sin(sin−1 α) = α etc.
We can use these inverse functions to help find values of some circular functions.
( )
( )
4
5
−1
Example 14.1 If θ = sin
+ sin
find sin θ.
5
13
( )
( )
4
5
−1
−1
Let sin
= α, sin
=β ⇒θ =α+β
5
13
−1
sin θ = sin(α + β) = sin α cos β + cos α sin β
α
13
5
5
3
β
4
12
3
4
cos α = , sin α =
5
5
cos β =
12
,
13
sin β =
5
13
48 + 15
63
4 12 3 5
·
+ ·
=
=
5 13 5 13
65
65
( )
( )
12
24
Example 14.2 If θ = sin−1
+ tan−1
find cos θ.
13
7
sin θ =
(
Let sin
−1
12
13
)
(
−1
= α, tan
24
7
)
=β ⇒θ =α+β
cos θ = cos α cos β − sin α sin β
β
α
13
25
12
cos α =
5
,
13
7
5
24
sin α =
12
13
cos θ =
cos β =
7
,
25
sin β =
5 7
12 24
35 − 288
253
·
−
·
=
=−
13 25 13 25
325
325
24
25
21
Summer School: Circular Functions
15
Polar Coordinates
Y
Let P have Cartesian coordinates (x, y).
OP has length r ≥ 0.
P(x,y)
b = θ.
X OP
Then P has polar coordinates (r, θ).
We have
r
x = r cos θ,
x2 + y 2 = r 2 ,
y
y = r sin θ
r=
√
x2 + y 2
θ
y
tan θ =
x
X
x
O
θ is usually restricted to −π < θ ≤ π or
0 ≤ θ < 2π. (The later in our case).
We use a similar method to find θ as we did for solving trigonometric equations. That is,
firstly solve
y
tan θ̂ = x
Then we check which quadrant we are in and use the same relations as before to find θ.
Example 15.1 (x, y) = (1,
r=
√
x2 + y 2 =
tan(θ̂) =
√
√
√
3)
Y
(1, 3)
1+3=2
3 ⇒ θ̂ =
π
3
π
The point is in the 1st quad so θ = is
( π )3
fine and Polar coordinates are 2,
.
3
θ
X
22
Summer School: Circular Functions
√
Example 15.2 (x, y) = (−1, − 3)
r=
√
Y
1+3=2
θ
√
− 3 √
π
= 3 ⇒ θ̂ =
tan(θ̂) =
−1
3
X
The point is in the 3rd quad so
π
4π
=
3
3
(
)
4π
and Polar coordinates are 2,
.
3
θ=π+
(−1,− 3)
Example 15.3 (x, y) = (4, −4)
r=
√
x2 + y 2 =
√
16 + 16 =
√
√
32 = 4 2
Y
θ
4
π
tan(θ̂) = = 1 ⇒ θ̂ =
4
4
X
The point is in the 4th quad so
π
7π
=
4
4
(
)
√ 7π
and Polar coordinates are 4 2,
.
4
√
Example 15.4 (x, y) = (− 3, 3)
θ = 2π −
r=
√
3+9=
√
(4,−4)
√
12 = 2 3
Y
√
3
π
tan(θ̂) = √ = 3 ⇒ θ̂ =
3
3
(− 3, 3)
The point is in the 2nd quad so
2π
π
=
3
3
(
)
√ 2π
and Polar coordinates 2 3,
.
3
θ=π−
θ
THE END
X
Related documents