Download TrigInt

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MATH 137
Trigonometric Integrals
1. Standard Trig Functions:
(i) ∫ sin x dx = − cos x + C
(ii) ∫ cos x dx = sin x + C
(iii) ∫ tan x dx = − ln cos x + C
(iv) ∫ cot x dx = ln sin x + C
Proof. Let u = cos x . Then
and
du
= − sin x
dx
Proof.
du
= dx . Then
− sin x
sin x
sin x
du
∫ tan x dx = ∫ cos x dx = ∫ u × − sin x
= −∫
1
du = − ln u + C
u
= − ln cos x + C .
(v) ∫ sec x dx = ln sec x + tan x + C
(vi) ∫ csc x dx = − ln csc x + cot x + C
Proof. We alter the integral as follows:
Proof.
sec x + tan x
∫ sec x dx = ∫ sec x × sec x + tan x dx
=∫
sec 2 x + sec x tan x
dx .
sec x + tan x
Now let u = sec x + tan x so that we
du
have
= sec x tan x + sec 2 x . Then
dx
∫ sec x dx = ∫
sec 2 x + sec x tan x
dx
sec x + tan x
sec 2 x + sec x tan x
du
×
u
sec x tan x + sec 2 x
1
= ∫ du = ln u + C = ln sec x + tan x + C.
u
=∫
2. Standard Hyperbolic Trig Functions:
(i) ∫ sinh x dx = cosh x + C
(ii) ∫ cosh x dx = sinh x + C
(iii) ∫ tanh x dx = ln(cosh x) + C
(iv) ∫ coth x dx = ln sinh x + C
Proof. Let u = cosh x . Then
and
du
= sinh x
dx
Proof.
du
= dx . Then
sinh x
sinh x
sinh x
du
∫ tanh x dx = ∫ cosh x dx = ∫ u × sinh x
=∫
1
du = ln u + C
u
= ln cosh x + C = ln(cosh x ) + C,
because cosh x > 0 for all x .
(v) ∫ sech x dx = 2 tan −1 (e x ) + C
(vi) ∫ csch x dx = −2 tanh −1(e x ) + C
Proof. We alter the integral as follows:
Proof.
1
2
∫ sech x dx = ∫ cosh x dx = ∫ x − x dx
e +e
=∫
2
2
dx = ∫ 2x
dx
1
e +1
ex + x
e
ex
ex
= 2 ∫ 2x
dx
e +1
Now let u = e x so that du = e x dx . Then
ex
sech
x
dx
=
2
dx
∫
∫ 2x
e +1
1
= 2∫ 2
du = 2 tan −1 (u) + C
u +1
= 2 tan −1 (e x ) + C
3. Squares of Standard Trig Functions: We need the following identities:
cos2 x + sin 2 x = 1
1 + tan 2 x = sec 2 x
cot 2 x + 1 = csc 2 x
cos2 x − sin 2 x = cos(2x ) or (1 − sin 2 x ) − sin 2 x = cos(2x ) , which gives
2
1 − 2sin 2 x = cos(2 x) , and then sin x =
1 − cos(2 x)
.
2
Likewise, cos2 x − (1 − cos2 x ) = cos(2x ) , which gives
2
2 cos2 x − 1 = cos(2 x) , and then cos x =
x 1
− sin(2x ) + C
2 4
2
(i) ∫ sin x dx =
2
Proof. Using sin x =
2
1 + cos(2 x)
.
2
(ii) ∫ cos x dx =
x 1
+ sin(2x ) + C
2 4
1 − cos(2 x)
Proof.
, we have
2
1 1

2
∫ sin x dx = ∫  2 − 2 cos(2x ) dx
1
1 1
x − × sin(2 x) + C
2
2 2
x 1
= − sin(2 x) + C .
2 4
=
(iii) ∫ sec 2 x dx = tan x + C
(iv) ∫ csc 2 x dx = − cot x + C
(v) ∫ tan 2 x dx = tan x − x + C
(vi) ∫ cot 2 x dx = − cot x − x + C
2
2
Proof. Using 1 + tan x = sec x , we have
2
2
∫ tan x dx = ∫ (sec x − 1) dx
= tan x − x + C.
Proof.
4. Squares of Standard Hyperbolic Trig Functions: We need the following identities:
cosh 2 x − sinh 2 x = 1
1 − tanh 2 x = sech 2 x
coth 2 x − 1 = csch 2 x
cosh 2 x + sinh2 x = cosh(2x ) or (1 + sinh 2 x ) + sinh 2 x = cosh(2 x) , which gives
2
1 + 2 sinh2 x = cosh(2x ) , and then sinh x =
cosh(2 x) − 1
.
2
Likewise, cosh 2 x + (cosh 2 x − 1) = cosh(2x ) , which gives
2
2 cosh 2 x − 1 = cosh(2x ) , and then cosh x =
2
(i) ∫ sinh x dx =
Proof.
With
1
x
sinh(2 x) − + C
4
2
sinh2 x =
have
cosh(2 x) − 1
,
2
1
2
∫ sinh x dx = ∫  2 cosh(2 x ) −
2
cosh(2 x) + 1
.
2
(ii) ∫ cosh x dx =
we
1
x
sinh(2 x) + + C
4
2
Proof.
1
 dx
2
1 1
1
× sinh(2 x) − x + C
2 2
2
1
x
= sinh(2 x) − + C .
4
2
=
(iii) ∫ sech 2 x dx = tanh x + C
(iv) ∫ csch 2 x dx = − coth x + C .
(v) ∫ tanh 2 x dx = x − tanh x + C
(vi) ∫ coth 2 x dx = − coth x + x + C
2
2
Proof. Using 1 − tanh x = sech x , we have Proof.
2
2
∫ tanh x dx = ∫ (1 − sech x) dx
= x − tanh x + C.
5. Cubes of Standard Trig Functions:
cos3 x
(i) ∫ sin x dx = − cos x +
+C
3
sin3 x
(ii) ∫ cos x dx = sin x −
+C
3
Proof.
Proof.
3
3
3
2
∫ sin x dx = ∫ sin x × sin x dx
= ∫ sin x × (1 − cos2 x ) dx
= ∫ sin x dx − ∫ sin x × (cos 2 x ) dx
= − cos x +
cos3 x
+C
3
(The last integral is by int. by sub. using
u = cos x .)
(iii) ∫ tan 3 x dx =
tan 2 x
+ ln cos x + C
2
∫ sec3 x dx
(iv)
=
Proof.
3
2
∫ tan x dx = ∫ tan x × tan x dx
= ∫ tan x × (sec2 x − 1) dx
= ∫ tan x sec 2 x dx − ∫ tan x dx
2
=
tan x
+ ln cos x + C
2
(The second to last integral is by int. by
sub. using u = tan x .)
1
1
sec x tan x + ln sec x + tan x + C
2
2
Proof. By int. by parts:
u = sec x
u′ = sec x tan x
v ′ = sec 2 x dx
v = tan x
∫ sec3 x dx = u v − ∫ u′v
= sec x tan x − ∫ sec x tan 2 x dx
= sec x tan x − ∫ sec x (sec 2 x − 1) dx
= sec x tan x − ∫ sec3 x dx + ∫ sec x dx
So,
2 ∫ sec x dx = sec x tan x + ∫ sec x dx
3
and
1
1
3
∫ sec x dx = 2 sec x tan x + 2 ∫ sec x dx
=
1
1
sec x tan x + ln sec x + tan x + C
2
2
Related documents