Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Integration by Substitution SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 5.3 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes. EXPECTED SKILLS: • Know how to simplify a “complicated integral” to a known form by making an appropriate substitution of variables. PRACTICE PROBLEMS: For problems 1-21, evaluate the given indefinite integral and verify that your answer is correct by differentiation. Z 1. 3x2 (x3 + 3)3 dx 1 3 (x + 3)4 + C 4 Z 5 dx 2. 5x + 3 ln |5x + 3| + C Z 3. 2x cos (x2 ) dx sin (x2 ) + C Z 4. 4x(x2 + 6)2 dx 2 2 (x + 6)3 + C 3 Z 5. sec (4x) tan (4x) dx 1 sec (4x) + C 4 Z 6. (3x − 5)9 dx 1 (3x − 5)10 + C 30 1 Z 7. e−2x dx 1 − e−2x + C 2 Z sin x cos x 8. dx 1 + sin2 x 1 ln (1 + sin2 x) + C 2 Z x x 9. csc cot dx 2 2 x −2 csc +C 2 Z √ 10. −3x3 1 − x4 dx 3 1 (1 − x4 ) 2 + C 2 Z √x e 1 √ − cos 4x dx 11. x 4 √ 2e x − 1 sin (4x) + C 16 Z 1 dx 2 + 4x2 √ 1 √ arctan ( 2x) + C 2 2 Z 4x 13. dx (3 + x2 )2 12. −2(3 + x2 )−1 + C Z √ 14. x2 4 − x dx. − 32 16 2 (4 − x)3/2 + (4 − x)5/2 − (4 − x)7/2 + C 3 5 7 2 Z 15. 1 dx (HINT: Complete the square) + x − x2 1 +C arcsin x − 2 q Z 16. 3 4 e3/x dx x2 1 − e3/x + C 3 Z ex dx 17. e2x + 1 tan−1 (ex ) + C Z 18. (sin 4x)(cos 4x)2/3 dx − Z 19. 3 (cos 4x)5/3 + C 20 3 csc2 (3x) tan2 (3x) + x2 ex dx 1 3 1 tan (3x) + ex + C 3 3 Z 1 20. dx x ln x ln | ln x| + C cos−1 x √ dx 1 − x2 2 1 − cos−1 x + C 2 Z 21. 22. Use an appropriate trigonometric identity followed by a reasonable substitution to Z evaluate tan x dx ln | sec x| + C 3 1 32x2 + 77x + 49 2 − = . Use this fact to evaluate 23. It can be shown that 2 (3x + 1)(4x + 5) 3x + 1 (4x + 5)2 Z 32x2 + 77x + 49 dx. (3x + 1)(4x + 5)2 2 1 ln |3x + 1| + +C 3 4(4x + 5) π π 24. Using the substitution x = sin θ for − ≤ θ ≤ , evaluate 2 2 your answer completely in terms of the variable x. Z √ 1 − x2 dx. Express HINT - The following trigonometric identities will be helpful: sin2 θ + cos2 θ = 1, 1 cos2 θ = (1 + cos (2θ), and sin (2θ) = 2 sin θ cos θ 2 1 1 √ x 1 − x2 + sin−1 x + C 2 2 4