Download Integration by Substitution

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Integration by Substitution
SUGGESTED REFERENCE MATERIAL:
As you work through the problems listed below, you should reference Chapter 5.3 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource)
and your lecture notes.
EXPECTED SKILLS:
• Know how to simplify a “complicated integral” to a known form by making an appropriate substitution of variables.
PRACTICE PROBLEMS:
For problems 1-21, evaluate the given indefinite integral and verify that your
answer is correct by differentiation.
Z
1.
3x2 (x3 + 3)3 dx
1 3
(x + 3)4 + C
4
Z
5
dx
2.
5x + 3
ln |5x + 3| + C
Z
3.
2x cos (x2 ) dx
sin (x2 ) + C
Z
4.
4x(x2 + 6)2 dx
2 2
(x + 6)3 + C
3
Z
5.
sec (4x) tan (4x) dx
1
sec (4x) + C
4
Z
6. (3x − 5)9 dx
1
(3x − 5)10 + C
30
1
Z
7.
e−2x dx
1
− e−2x + C
2
Z
sin x cos x
8.
dx
1 + sin2 x
1
ln (1 + sin2 x) + C
2
Z
x
x
9.
csc
cot
dx
2
2
x
−2 csc
+C
2
Z
√
10.
−3x3 1 − x4 dx
3
1
(1 − x4 ) 2 + C
2
Z √x
e
1
√ − cos 4x dx
11.
x 4
√
2e
x
−
1
sin (4x) + C
16
Z
1
dx
2 + 4x2
√
1
√ arctan ( 2x) + C
2 2
Z
4x
13.
dx
(3 + x2 )2
12.
−2(3 + x2 )−1 + C
Z
√
14.
x2 4 − x dx.
−
32
16
2
(4 − x)3/2 + (4 − x)5/2 − (4 − x)7/2 + C
3
5
7
2
Z
15.
1
dx (HINT: Complete the square)
+ x − x2
1
+C
arcsin x −
2
q
Z
16.
3
4
e3/x
dx
x2
1
− e3/x + C
3
Z
ex
dx
17.
e2x + 1
tan−1 (ex ) + C
Z
18. (sin 4x)(cos 4x)2/3 dx
−
Z
19.
3
(cos 4x)5/3 + C
20
3
csc2 (3x) tan2 (3x) + x2 ex dx
1 3
1
tan (3x) + ex + C
3
3
Z
1
20.
dx
x ln x
ln | ln x| + C
cos−1 x
√
dx
1 − x2
2
1
− cos−1 x + C
2
Z
21.
22. Use an appropriate
trigonometric identity followed by a reasonable substitution to
Z
evaluate tan x dx
ln | sec x| + C
3
1
32x2 + 77x + 49
2
−
=
. Use this fact to evaluate
23. It can be shown that
2
(3x + 1)(4x + 5)
3x + 1 (4x + 5)2
Z
32x2 + 77x + 49
dx.
(3x + 1)(4x + 5)2
2
1
ln |3x + 1| +
+C
3
4(4x + 5)
π
π
24. Using the substitution x = sin θ for − ≤ θ ≤ , evaluate
2
2
your answer completely in terms of the variable x.
Z √
1 − x2 dx. Express
HINT - The following trigonometric identities will be helpful: sin2 θ + cos2 θ = 1,
1
cos2 θ = (1 + cos (2θ), and sin (2θ) = 2 sin θ cos θ
2
1
1 √
x 1 − x2 + sin−1 x + C
2
2
4
Related documents