Download Data science for Doctors: Inferential Statistics - R

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Data science for Doctors:
Inferential
Statistics
Solutions (part-2)
Below are the solutions to these exercises on inferential
statistics.
####################
#
#
#
Exercise 1
#
#
#
####################
binom.test(5 ,30, mean(data$class),alternative = "two.sided")
##
##
Exact binomial test
##
## data: 5 and 30
## number of successes = 5, number of trials = 30, p-value =
0.03587
## alternative hypothesis: true probability of success is not
equal to 0.3489583
## 95 percent confidence interval:
## 0.0564217 0.3472117
## sample estimates:
## probability of success
##
0.1666667
####################
#
#
#
Exercise 2
#
#
#
####################
binom.test(c(5,
"two.sided")
25),
mean(data$class)
,alternative
=
##
##
Exact binomial test
##
## data: c(5, 25)
## number of successes = 5, number of trials = 30, p-value =
## 0.0003249
## alternative hypothesis: true probability of success is not
equal to 0.5
## 95 percent confidence interval:
## 0.0564217 0.3472117
## sample estimates:
## probability of success
##
0.1666667
####################
#
#
#
Exercise 3
#
#
#
####################
binom.test(5, 30, mean(data$class), alternative="less")
##
##
Exact binomial test
##
## data: 5 and 30
## number of successes = 5, number of trials = 30, p-value =
0.0239
## alternative hypothesis: true probability of success is less
than 0.3489583
## 95 percent confidence interval:
## 0.0000000 0.3189712
## sample estimates:
## probability of success
##
0.1666667
#OR
pbinom(5, 30, mean(data$class))
## [1] 0.0238959
# We reject our null hypothesis
####################
#
#
#
Exercise 4
#
#
#
####################
binom.test(5,30,
conf.level=0.99,alternative="less")
mean(data$class),
##
##
Exact binomial test
##
## data: 5 and 30
## number of successes = 5, number of trials = 30, p-value =
0.0239
## alternative hypothesis: true probability of success is less
than 0.3489583
## 99 percent confidence interval:
## 0.0000000 0.3808047
## sample estimates:
## probability of success
##
0.1666667
# we can't reject our null hypothesis
####################
#
#
#
Exercise 5
#
#
#
####################
binom.test(2,
30,
mean(data$class),
conf.level=0.999,alternative="less")
##
##
Exact binomial test
##
## data: 2 and 30
## number of successes = 2, number of trials = 30, p-value =
## 0.0003637
## alternative hypothesis: true probability of success is less
than 0.3489583
## 99.9 percent confidence interval:
## 0.0000000 0.3214435
## sample estimates:
## probability of success
##
0.06666667
# We reject our null hypothesis
####################
#
#
#
Exercise 6
#
#
#
####################
z <- 1.96
low <- mean(data$mass) - z*sd(data$mass)/sqrt(30)
high <- mean(data$mass) + z*sd(data$mass)/sqrt(30)
low;high
## [1] 29.17127
## [1] 34.81389
####################
#
#
#
Exercise 7
#
#
#
####################
z <- (29 - mean(data$mass))/(sd(data$mass)/sqrt(30))
####################
#
#
#
Exercise 8
#
#
#
####################
2*pnorm(-abs(z),,1) #Reject the null hypothesis
## [1] 0.03761903
####################
#
#
#
Exercise 9
#
#
#
####################
library(TeachingDemos)
z.test(29,mu=mean(data$mass),sd=sd(data$mass)/sqrt(30),
alternative = "two.sided", conf.level = 0.95)
##
##
One Sample z-test
##
## data: 29
## z = -2.079, n = 1.0000, Std. Dev. = 1.4394, Std. Dev. of
the
## sample mean = 1.4394, p-value = 0.03762
## alternative hypothesis: true mean is not equal to 31.99258
## 95 percent confidence interval:
## 26.17874 31.82126
## sample estimates:
## mean of 29
##
29
####################
#
#
#
Exercise 10
#
#
#
####################
z.test(29,mu=mean(data$mass),sd=sd(data$mass)/sqrt(30),
alternative = "less", conf.level = 0.99)
##
##
##
One Sample z-test
## data: 29
## z = -2.079, n = 1.0000, Std. Dev. = 1.4394, Std. Dev. of
the
## sample mean = 1.4394, p-value = 0.01881
## alternative hypothesis: true mean is less than 31.99258
## 99 percent confidence interval:
##
-Inf 32.34865
## sample estimates:
## mean of 29
##
29
Related documents