Download University of Windsor Mathematics Practice Problems Solutions 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
University of Windsor Mathematics Practice Problems Solutions
1. The function f has the property that for each real number x,
f (x) + f (x − 1) = x2
If f (19) = 94 what is the remainder when f (94) is divided by 1000?
Solution:
f (x) = x2 − f (x − 1)
f (94) = 942 − f (93)
= 942 − 932 + f (92)
= 942 − 932 + 922 − 912 + . . . + 222 − 212 + 202 − f (19)
We can pair up consecutive squares and write each pair as a difference of squares,
f (94)
= (94 + 93)(94 − 93) + (92 + 91)(92 − 91) + . . . + (22 + 21)(22 − 21) + 202 − f (19)
= 94 + 93 + 92 + . . . + 22 + 21 + 202 − f (19)
= (1 + 2 + 3 + . . . + 74) + 74(20) + 202 − f (19)
Recall,
n
X
n(n + 1)
2
=
i=1
So,
f (94)
74(75)
+ 74(20) + 202 − 94
2
4561
=
=
Thus the remainder when f (94) = 4561 is divided by 1000 is 561.
2. Let f (x) =
9x
9x +3 .
Evaluate the sum
f(
1
2
3
2006
) + f(
) + f(
) + ... + f (
).
2007
2007
2007
2007
Solution:
Notice that ∀k,
k
2007 − k
f(
) + f(
)
2007
2007
k
=
=
9 2007
k
9 2007 + 3
9
k
2007
×9
9
+
9
2007−k
2007
2007−k
2007
2007−k
2007
+9
+3
k
2007
k
× 3 + 9 2007 × 9
k
(9 2007 + 3)(9
=
9+3×9
(9
=
=
(9
(9
1
k
2007
k
2007
k
2007
k
2007
+9+3×9
+ 3)(9
2007−k
2007
+ 3)
+ 3)(9
2007−k
2007
+ 3)
+ 3)(9
2007−k
2007
+ 3)
1
2007−k
2007
2007−k
2007
2007−k
2007
+ 3)
+3×9
2007−k
2007
Thus, the sum,
f(
1
2
3
2006
) + f(
) + f(
) + ... + f (
).
2007
2007
2007
2007
Rewritten as,
2006
X
f(
k=1
k
)
2007
=
1003
X
[f (
k=1
=
1003
X
2007 − k
k
) + f(
)]
2007
2007
1
k=1
=
Notice that
2007−1
2
=
2006
2
1003
= 1003.
3. Let a, b and c be positive real numbers. Prove that
aa bb cc ≥ (abc)
a+b+c
3
.
Solution:
We can equivalently prove that,
a3a b3b c3c ≥ (abc)a+b+c
Or,
a3a b3b c3c
≥1
(abc)a+b+c
WLOG, assume that a ≥ b ≥ c
⇒ a − b ≥ 0,
and
a − c ≥ 0,
a
≥ 1,
b
a
≥ 1,
c
b−c≥0
b
≥1
c
Thus we have,
a3a b3b c3c
(abc)a+b+c
=
a3a b3b c3c
aa+b+c ba+b+c ca+b+c
= a3a−(a+b+c) b3b−(a+b+c) c3c−(a+b+c)
= a2a−(b+c) b2b−(a+c) c2c−(a+b)
= aa−b aa−c b−(a−b) bb−c c−(a−c) c−(b−c)
a
b
a
= ( )a−b ( )a−c ( )b−c
b
c
c
≥ 1
Thus we have
aa bb cc ≥ (abc)
2
a+b+c
3
Related documents