Download Trigonometric Integrals and Substitutions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section 6.2 Trigonometric Integrals and Substitutions
2010 Kiryl Tsishchanka
Trigonometric Integrals and Substitutions
This section consists of two parts:
Part I: Trigonometric Integrals. We will distinguish three main cases:
Case A: Integrals of type
Z
sinm x cosn xdx
where m and n are nonnegative integers.
METHOD OF INTEGRATION:
(i) If m is odd, then u = cos x.
(ii) If n is odd, then u = sin x.
(iii) If both m and n are even, then use the identities
1
sin2 x = (1 − cos 2x),
2
1
cos2 x = (1 + cos 2x)
2
or(and) sometimes
sin x cos x =
EXAMPLE 1: Find
Z
1
sin 2x
2
sin3 xdx.
Solution: We have
Z
3
sin xdx =
=−
Z
EXAMPLE 2: Find
Z
2
sin x · sin xdx =
Z


 d cos x = du
(1 − cos x) sin xdx = 
 − sin xdx = du

2
1
1
(1 − u2 )du = −u + u3 + C = − cos x + cos3 x + C
3
3
Z
cos x = u
sin5 xdx.
1
sin xdx = −du






Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 2: Find
Z
2010 Kiryl Tsishchanka
sin5 xdx.
Solution: We have
Z
Z
Z
Z
5
4
2
2
sin xdx = sin x · sin xdx = (sin x) sin xdx = (1 − cos2 x)2 sin xdx
cos x = u


 d cos x = du
=
 − sin xdx = du



Z
Z

 = − (1 − u2 )2 du = − (1 − 2u2 + u4 )du


sin xdx = −du
2
1
2
1
= −u + u3 − u5 + C = − cos x + cos3 x − cos5 x + C
3
5
3
5
EXAMPLE 3: Find
Z
sin2 x cos3 xdx.
Solution: We have
Z
Z
Z
2
3
2
2
sin x cos xdx = sin x cos x · cos xdx = sin2 x(1 − sin2 x) cos xdx

sin x = u



=  d sin x = du  =
cos xdx = du
EXAMPLE 4: Find
Z √
3
Z
2
2
u (1 − u )du =
Z
1
1
1
1
(u2 − u4 )du = u3 − u5 + C = sin3 x − sin5 x + C
3
5
3
5
sin x cos5 xdx.
2
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 4: Find
Z √
3
2010 Kiryl Tsishchanka
sin x cos5 xdx.
Solution: We have
Z √
Z √
Z √
3
3
3
5
4
sin x cos xdx =
sin x cos x · cos xdx =
sin x(cos2 x)2 · cos xdx


sin x = u
Z √
Z
√


3
2
2
3
=
sin x(1 − sin x) · cos xdx =  d sin x = du  =
u(1 − u2 )2 du
cos xdx = du
=
Z
u
=
Z
(u1/3 − 2u7/3 + u13/3 )du =
1/3
2
4
(1 − 2u + u )du =
Z
=
(u1/3 − 2u2+1/3 + u4+1/3 )du
u7/3+1
u13/3+1
u1/3+1
−2
+
+C
1/3 + 1
7/3 + 1 13/3 + 1
u4/3
u10/3 u16/3
−2
+
+C
4/3
10/3 16/3
3
3
3
= u4/3 − u10/3 + u16/3 + C
4
5
16
=
EXAMPLE 5: Find
Z
3
3
3 4/3
sin x − sin10/3 x +
sin16/3 x + C
4
5
16
sin2 x cos2 xdx.
Solution: We have
2
Z
Z
Z Z
Z
1
1
1
1
2
2
2
2
sin x cos xdx = (sin x cos x) dx =
sin 2xdx =
sin 2x dx =
(1 − cos 4x)dx
2
4
4
2


4x = u


 d(4x) = du 
Z
Z


1
1
1
1


(1 − cos 4x)dx =  4dx = du  =
(1 − cos u)du = (u − sin u) + C = (4x − sin 4x) + C
=
8
32
32
 32



1
dx = du
4
EXAMPLE 6: Find
Z
cos4 xdx.
3
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 6: Find
Z
2010 Kiryl Tsishchanka
cos4 xdx.
Solution: We have
2
Z
Z
Z Z
1 + cos 2x
1
4
2
2
cos xdx = (cos x) dx =
(1 + cos 2x)2 dx
dx =
2
4
Z
Z 1
1
1
2
=
(1 + 2 cos 2x + cos 2x)dx =
1 + 2 cos 2x + (1 + cos 4x) dx
4
4
2
Z 1
3
1
1 3
1
1
1 1 1
=
+ 2 cos 2x + cos 4x dx = · x + · 2 · sin 2x + · · sin 4x + C
4
2
2
4 2
4
2
4 2 4
1
1
3
sin 4x + C
= x + sin 2x +
8
4
32
Case B: Integrals of type
Z
tanm x secn xdx
Midterms where m and n are nonnegative integers.
METHOD OF INTEGRATION:
(i) If m is odd, then u = sec x.
(ii) If n is even, then u = tan x.
(iii) In other cases the guidelines are not as clear-cut.
EXAMPLE 7: Find
Z
tan xdx.
Solution 1: We have
Z
tan xdx =
Z
sin x
dx =
cos x
Z
cos x = u


 d cos x = du
1
· sin xdx = 
 − sin xdx = du
cos x

sin xdx = −du


Z

 = − 1 du

u

= − ln |u| + C = − ln | cos x| + C = ln | cos x|−1 + C = ln | sec x| + C
Solution 2: We have
Z
tan xdx =
Z

tan x sec x

dx = 
sec x
sec x = u
d sec x = du
sec x tan xdx = du
4


=
Z
1
du = ln |u| + C = ln | sec x| + C
u
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 8: Find
Z
(a) csc xdx
2010 Kiryl Tsishchanka
Z
(b)
sec xdx
Solution 1:
(a) We have

x
=u
2



 x
 Z
 d
Z
Z
Z
Z
Z
=
du


dx
dx
2du
du
2du
2


x = 
csc xdx =
=
=
=
=

sin x
sin (2u)
2 sin u cos u
sin u cos u

 1
sin 2 ·

dx = du 
2

 2
dx = 2du


tan u = v
Z
Z
Z
Z
Z
sec2 udu
sec2 udu
sec2 udu 
dv
sec2 udu

d
tan
u
=
dv
=
=
=
=
=
=


sin
u
cos
u
sin
u
sec2 u sin u cos u
tan u
v
cos2 u
cos u
sec2 udu = dv
x = ln |v| + C = ln | tan u| + C = ln tan
+C
2
In short,
2 x
Z
Z
Z
Z
Z
sec
dx
dx
dx
dx
2
x
csc xdx =
=
x =
x
x =
x
x
sin x
2
cos
sin
cos
sin 2 ·
2 sin
2 sec
2
2
2
2
2
2
x


=v
tan
2


x
x


Z sec2
x = dv  Z dv
dx  d tan


2
2
=
= ln |v| + C = ln tan
=
+C
x =
1
x
 sec2
v
2
2 tan
dx = dv 


2
2

 2 x
2
dx = 2dv
sec
2
This can be rewritten as ln |csc x − cot x| + C (see Appendix II).

(b) We have
Z
sec xdx =
Z
dx
=
cos x
Z




=

π

sin x +
2
dx
π
x+ =u
2
π
= du
d x+
2
dx = du

 Z

du
=

sin u

u π
which is ln tan
+ C by (a). Substituting x + for u, we get
2
2


π
Z
x+
2
 + C = ln tan x + π + C
sec xdx = ln tan 
2
2 4
This can be rewritten as ln |sec x + tan x| + C (see Appendix II).
5
Section 6.2 Trigonometric Integrals and Substitutions
2010 Kiryl Tsishchanka
Solution 2:
(a) We have
Z
csc xdx =
1
dx =
sin x
Z
=−
Z
sin x
dx =
sin2 x
Z
1
du = −
(1 − u)(1 + u)
Z
Z
cos x = u


 d cos x = du
sin x

dx
=
 − sin xdx = du
1 − cos2 x

1
2


Z

1
=−
du

1 − u2

sin xdx = −du
Z
Z
1
1
1
1
1
1
du = −
+
du −
du
1−u 1+u
2
1−u
2
1+u
1
1
1
1 1 − u 1 − cos x
= ln |1 − u| − ln |1 + u| + C = ln + C = ln
+C
2
2
2
1 + u
2
1 + cos x
This can be rewritten as ln |csc x − cot x| + C (see Appendix II).
(b) We have
Z
cos x
dx =
cos2 x
Z
1
2
sec xdx =
Z
1
dx =
cos x
=
Z
1
du =
(1 − u)(1 + u)
Z
Z
sin x = u


cos x


2 dx =  d sin x = du  =
1 − sin x
cos xdx = du
1
1
+
1−u 1+u
1
du =
2
Z
Z
1
1
du +
1−u
2
1
du
1 − u2
Z
1
du
1+u
1
1
1 1 + u 1 + sin x
1
+ C = ln
+C
= − ln |1 − u| + ln |1 + u| + C = ln 2
2
2
1 − u
2
1 − sin x
This can be rewritten as ln |sec x + tan x| + C (see Appendix II).
Solution 3:
(a) We have
Z
csc xdx =
=
Z
Z
csc x
csc x − cot x
dx =
csc x − cot x
Z
csc x − cot x = u

csc2 x − csc x cot x

dx = 
csc x − cot x
d(csc x − cot x) = du
(− csc x cot x + csc2 x)dx = du
1
du = ln |u| + C = ln | csc x − cot x| + C
u



(b) We have
Z
sec xdx =
Z
sec x
sec x + tan x
dx =
sec x + tan x
Z

2
sec x + sec x tan x

dx = 
sec x + tan x
1
du = ln |u| + C = ln | sec x + tan x| + C
u
Z
EXAMPLE 9: Find tan8 x sec4 xdx.
=
Z
6
sec x + tan x = u
d(sec x + tan x) = du
(sec x tan x + sec2 x)dx = du



Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 9: Find
Solution: We have
Z
Z
tan8 x sec4 xdx =
=
Z
tan8 x sec4 xdx.
Z
u8 (1 + u2)du =
EXAMPLE 10: Find
Z
2010 Kiryl Tsishchanka
Z
tan8 x sec2 x · sec2 xdx =
Z
tan x = u




tan8 x(1 + tan2 x) sec2 xdx =  d tan x = du 
sec2 xdx = du
1
1
1
1
(u8 + u10 )du = u9 + u11 + C = tan9 x +
tan11 x + C
9
11
9
11
tan3 xdx.
Solution 1: We have
Z
Z
Z
3
2
tan xdx = tan x · tan xdx = (sec2 x − 1) · tan xdx


sec x = u
Z
Z
(u2 − 1)du
(sec2 x − 1) · sec x tan xdx 

d sec x = du
=
=
=

sec x
u
sec x tan xdx = du
Z 1
u2
1
=
u−
du =
− ln |u| + C = sec2 x − ln | sec x| + C
u
2
2
Solution 2: We have
Z
Z
Z
Z
3
2
2
tan xdx = tan x · tan xdx = (sec x − 1) · tan xdx = (sec2 x tan x − tan x)dx
=
To evaluate
Z
Z
Z
sec x tan xdx −
Z
tan xdx = [by Example 7] =
Z
sec2 x tan xdx − ln | sec x|
Z
udu =
sec2 x tan xdx, we either
2
sec x tan xdx =
Z
or
Z
Therefore
2

sec x · sec x tan xdx = 
2
sec x = u



d sec x = du
sec x tan xdx = du
tan x = u



sec x tan xdx =  d tan x = du  =
sec2 xdx = du
Z
udu =

=
1
u2
+ C = sec2 x + C
2
2
1
u2
+ C = tan2 x + C
2
2
1
sec2 x − ln | sec x| + C
2
or
1
tan2 x − ln | sec x| + C
2
Other possible answers are
Z
1
tan3 xdx = sec2 x + ln | cos x| + C
2
or
1
tan2 x + ln | cos x| + C
2
Z
tan3 xdx =
7
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 11: Find
Z
2010 Kiryl Tsishchanka
sec3 xdx.
Solution: We have
Z
3
sec xdx =
Z
2


sec x · sec xdx = 
sec x = u
sec2 xdx = dv
d(sec x) = du
tan x = v
It follows that
2
so
1
sec xdx =
2
3

 = sec x tan x −
Z
sec x tan2 xdx
sec x tan xdx = du
Z
Z
2
= sec x tan x − sec x(sec x − 1)dx = sec x tan x − (sec3 x − sec x)dx
= sec x tan x −
Z

Z
Z
3
sec xdx +
3
Z
sec xdx = sec x tan x +
sec xdx
Z
sec xdx
Z
1
sec x tan x + sec xdx = [by Example 8] = (sec x tan x + ln | sec x + tan x|) + C
2
Case C: Integrals of type
Z
sin αx sin βxdx,
Z
sin αx cos βxdx or
Z
cos αx cos βxdx
METHOD OF INTEGRATION: Use the identities
1
sin A sin B = [cos(A − B) − cos(A + B)]
2
1
cos A cos B = [cos(A + B) + cos(A − B)]
2
1
sin A cos B = [sin(A + B) + sin(A − B)]
2
EXAMPLE 12: Find
Z
cos 3x cos 2xdx.
8
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 12: Find
Z
Solution 1: We have
Z
2010 Kiryl Tsishchanka
cos 3x cos 2xdx.
cos 3x cos 2xdx =
1
cos A cos B = [cos(A + B) + cos(A − B)]
2
1
[cos(3x + 2x) + cos(3x − 2x)]dx
2
Z
Z
1
1
cos 5xdx +
cos xdx
=
2
2
=
Z
=
1
1
sin 5x + sin x + C
10
2
Solution 2: We have
Z

cos 3x = u

cos 2xdx = dv
1

sin 2x = v 
2

cos 3x cos 2xdx =  d(cos 3x) = du
−3 sin 3xdx = du
1
= cos 3x · sin 2x −
2
3
1
= cos 3x sin 2x +
2
2

1
sin 2x · (−3) sin 3xdx
2
Z
Z
sin 2x sin 3xdx

sin 2xdx = dv
1

− cos 2x = v 
2
sin 3x = u

=  d(sin 3x) = du
3 cos 3xdx = du
Z 1
1
1
3
= cos 3x sin 2x +
sin 3x · −
cos 2x −
−
cos 2x · 3 cos 3xdx
2
2
2
2
1
3
9
= cos 3x sin 2x − sin 3x cos 2x +
2
4
4
therefore
5
−
4
hence
Z
Z
Z
cos 2x cos 3xdx
cos 3x cos 2xdx =
1
3
cos 3x sin 2x − sin 3x cos 2x + C1
2
4
1
3
cos 3x sin 2x − sin 3x cos 2x + C1
2
4
4
cos 3x cos 2xdx = −
5
3
2
= − cos 3x sin 2x + sin 3x cos 2x + C
5
5
9
Section 6.2 Trigonometric Integrals and Substitutions
2010 Kiryl Tsishchanka
Part II: Trigonometric Substitutions. Here we deal with integrals that involve
√
√
√
a2 − x2 ,
a2 + x2 ,
x2 − a2
METHOD OF INTEGRATION:
√
π
π
(i) If a2 − x2 , then x = a sin θ, − ≤ θ ≤ .
2
2
√
π
π
(ii) If a2 + x2 , then x = a tan θ, − < θ < .
2
2
√
3π
π
(iii) If x2 − a2 , then x = a sec θ, 0 ≤ θ < or π ≤ θ <
.
2
2
Z √
EXAMPLE 13: Find
1 − x2 dx.
Solution 1: We have
Z √



1 − x2 dx = 


Z √
Solution 2: We have
 √
1−
dx = d(sin θ)







p
√
sin 2θ = 2 sin θ cos θ = 2x 1 − x2
Therefore
x2 dx
x = sin θ
dx = cos θdθ
√
√
1 − x2 = 1 − sin2 θ = cos2 θ = | cos θ| = cos θ
Z
Z
Z
1
1
1
2
(1 + cos 2θ)dθ = θ + sin 2θ + C
= cos θ · cos θdθ = cos θdθ =
2
2
4
Note that
Z √

1 − x2 = u
1 − x2 dx =
 √
2

=  d( 1 − x ) = du

−x
√
dx = du
1 − x2
dx = dv
1 √
1 −1
sin x + x 1 − x2 + C
2
2

Z

x = v  = √1 − x2 · x − x · √ −x dx


1 − x2
Z
Z √
√
1 − x2 − 1
1 − x2
1
−x2
2
2
√
√
√
dx = x 1 − x −
dx = x 1 − x −
−√
dx
1 − x2
1 − x2
1 − x2
1 − x2
Z √
Z √
Z
√
√
1
1 − x2 dx + √
1 − x2 dx + sin−1 x
dx = x 1 − x2 −
= x 1 − x2 −
2
1−x
Therefore
Z √
√
1 − x2 dx = x 1 − x2 + sin−1 x + C1
2
√
= x 1 − x2 −
so
Z
Z √
1 √
1
1 − x2 dx = x 1 − x2 + sin−1 x + C
2
2
10
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 14: Find
Z √
2010 Kiryl Tsishchanka
1 + x2 dx.
Solution: We have
Z √
x = tan θ


dx = d(tan θ)


1 + x2 dx = 







dx = sec2 θdθ
√
√
√
1 + x2 = 1 + tan2 θ = sec2 θ = | sec θ| = sec θ
Z
Z
1
2
= sec θ · sec θdθ = sec3 θdθ = [Example 11] = (sec θ tan θ + ln | sec θ + tan θ|) + C
2
√
1 √
= (x 1 + x2 + ln(x + 1 + x2 )) + C
2
EXAMPLE 15: Find
Z √
x2 − 1dx.
Solution: We have
Z √
x2
x = sec θ



− 1dx = 


dx = d(sec θ)
dx = sec θ tan θdθ
√
x2 − 1 = sec2 θ − 1 = tan2 θ = | tan θ| = tan θ
Z
Z
= tan θ · sec θ tan θdθ = tan2 θ sec θdθ
=
=
Z
Z
√
√
2
(sec θ − 1) sec θdθ =
3
sec θdθ −
Z
Z






(sec3 θ − sec θ)dθ
sec θdθ = [Examples 8 and 11]
1
= (sec θ tan θ + ln | sec θ + tan θ|) − ln | sec θ + tan θ| + C
2
=
1
1
sec θ tan θ + ln | sec θ + tan θ| − ln | sec θ + tan θ| + C
2
2
=
1
1
sec θ tan θ − ln | sec θ + tan θ| + C
2
2
1
= (sec θ tan θ − ln | sec θ + tan θ|) + C
2
√
1 √
= (x x2 − 1 − ln |x + x2 − 1|) + C
2
11
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 16: Find
Z √
2010 Kiryl Tsishchanka
4 − x2
dx.
x2
Solution 1: We have
Z √
4−
x2
x2




dx = 



x = 2 sin θ
dx = d(2 sin θ)
dx = 2 cos θdθ
p
p
√
4 − x2 = 4 − 4 sin2 θ = 4(1 − sin2 θ) = 4 cos2 θ = 2| cos θ| = 2 cos θ
Z
Z
Z
Z 2 cos θ
sin2 θ
cos2 θ
1 − sin2 θ
1
=
· 2 cos θdθ =
dθ =
dθ =
−
dθ
4 sin2 θ
sin2 θ
sin2 θ
sin2 θ sin2 θ
√
=
Note that
cot θ =
Therefore
Z √
Solution 2: We have

√
√
√
Z






(csc2 θ − 1)dθ = − cot θ − θ + C
4 − x2
x
4 − x2
4 − x2
−1 x
+C
dx
=
−
−
sin
x2
x
2
!!
2!!!
!
!!
!
θ
!
√
x
4 − x2

1
dx = dv 
4− =u

x2
Z Z √
 √

1
4 − x2
1
−x
1

 √
2
2
√
−
−
dx =  d( 4 − x ) = du − = v  = 4 − x · −
dx
2


x
x2
x
x
4
−
x


−x
√
dx = du
2
4−x
√
√
Z
x
4 − x2
4 − x2
dx
+C
− √
=−
− sin−1
=−
x
x
2
4 − x2
EXAMPLE 17: Find
Z
x2
x2
√
1
dx.
x2 − 9
12
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 17: Find
Z
x2
√
2010 Kiryl Tsishchanka
1
dx.
x2 − 9
Solution 1: We have
Z


1
√
dx = 

x2 x2 − 9

Note that
Therefore
x = 3 sec θ

dx = d(3 sec θ)






dx = 3 sec θ tan θdθ
√
p
x2 − 9 = 9 sec2 θ − 9 = 9(sec2 θ − 1) = 9 tan2 θ = 3| tan θ| = 3 tan θ
Z
Z
1
1
1
=
cos θdθ = sin θ + C
· 3 sec θ tan θdθ =
2
9 sec θ · 3 tan θ
9
9
!
x !!! √
√
!
x2 − 9
x2 − 9
!!
!
sin θ =
!! θ
x
3
√
Z
2
x −9
1
1
√
+C
dx = ·
2
2
9
x
x x −9
√
√
Solution 2: We first note that
√
Z √ 2
Z √ 2
Z
x −9
x −9
x2 − 9
1
1
√
dx =
−
dx
dx =
x2 (x2 − 9)
9
x2 − 9
x2
x2 x2 − 9
√
Z x2 − 9
1
1
√
dx
−
=
9
x2
x2 − 9
Z
Z √ 2
1
x −9
1
1
√
=
dx −
dx
2
9
9
x2
x −9
We have
 √

1
dx
=
dv
x2 − 9 = u


x2
Z √ 2
Z √


√
x −9
1
1
2 −9·
 d( x2 − 9) = du − = v 
dx
=
dx
=
x


x2
x2
x


x
√
dx = du
x2 − 9
Z √
1
x
1
√
−
−
dx
= x2 − 9 −
2
x
x
x −9
√
Z
x2 − 9
1
=−
+ √
dx
2
x
x −9
Therefore
Z
Z √ 2
Z
x −9
1
1
1
1
√
√
dx
dx =
dx −
2
9
9
x2
x x2 − 9
x2 − 9
√
√
Z
Z
x2 − 9 1
x2 − 9
1
1
1
1
1
√
√
dx + ·
dx = ·
−
+C
=
9
9
x
9
9
x
x2 − 9
x2 − 9
13
Section 6.2 Trigonometric Integrals and Substitutions
Solution 3 (version 1): Note that
Z
2010 Kiryl Tsishchanka
1
√
dx can be rewritten as
2
x x2 − 9
Z
xm (a + bxn )p dx with
1
m = −2, n = 2, p = − , a = −9, and b = 1
2
It is known that if
m+1
+ p is an integer (which is exactly the case)
n
then
b+
a
= uN , where N is the denominator of p
xn
Therefore we have






Z

1

√
dx = 
2
2

x x −9





1
=
9
9
1 − 2 = u2 =⇒
x
9
d 1 − 2 = du2
x
r
9
1 − 2 = u =⇒
x
√
x2 − 9
=u
x
18
dx = 2udu
x3
1
1
x
1
1 1
1
1
√
· dx = du =⇒ 3 · √
dx = du =⇒
dx = du
3
x u
9
x
9
9
x2 − 9
x2 x2 − 9
Z
1
1
du = u + C = ·
9
9
Solution 3 (version 2): We have
 √
√
x2 − 9
+C
x
x2 − 9
=u
x
√ 2
x −9
= du
d
x





Z

1

√
dx = 
2
2

x x −9
 √9
dx = du
 2 2
 x x −9


1
1
√
dx = du
9
x2 x2 − 9






√
 1Z
x2 − 9
1
1

du = u + C = ·
+C
=
 9
9
9
x





14















Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 18: Find
√
3Z 3/2
2010 Kiryl Tsishchanka
x3
dx.
(4x2 + 9)3/2
0
Solution: We have






√

3Z 3/2

3

x

dx
=

(4x2 + 9)3/2

0






Since
√
3
x = tan θ
2
3
dx = d
tan θ
2
3
dx = sec2 θdθ
2
s r
2
√
√
3
9
4x2 + 9 = 4
tan θ + 9 = 4 · tan2 θ + 9 = 9 tan2 θ + 9
2
4
p
√
= 9(tan2 θ + 1) = 9 sec2 θ = 3| sec θ| = 3 sec θ


















4x2 + 9 = 3 sec θ, we get
√
(4x2 + 9)3/2 = ( 4x2 + 9)3 = (3 sec θ)3 = 27 sec3 θ
We also note that since x =
3
tan θ, we have
2
if x = 0, then θ = 0
√
if x = 3 3/2, then θ = π/3
and
Therefore
√
3Z 3/2
x3
dx =
(4x2 + 9)3/2
0
3
=
16
tan3 θ 3
3
8
· sec2 θdθ =
3
27 sec θ 2
16
0
Zπ/3
0
3
=
16
Zπ/3 27
Zπ/3
tan3 θ
3
dθ =
sec θ
16
0

cos θ = u



1 − cos2 θ
d(cos θ) = du  = − 3
sin θdθ = 


2
cos θ
16
− sin θdθ = du
EXAMPLE 19: Find
Z
√
x
dx.
x2 − 9
15
sin3 θ
3
dθ =
2
cos θ
16
0
Z1/2
1 − u2
3
du = −
2
u
16
1
1/2
Z1/2
3
1
1
3
3
−2
=
u+
+ 2 − (1 + 1) =
(1 − u )du =
16
u 1
16
2
32
1
Zπ/3
Zπ/3
0
Z1/2
(u−2 − 1)du
1
sin2 θ
· sin θdθ
cos2 θ
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 19: Find
Z
√
2010 Kiryl Tsishchanka
x
dx.
−9
x2
Solution 1: We have
Z

x2 − 9 = u

 d(x2 − 9) = du

x
√
dx = 
 2xdx = du
x2 − 9


1
xdx = du
2



Z
Z
 1
du
1 u−1/2+1
1
−1/2
=
√
u
du
=
=
·
+C
 2
u
2
2 −1/2 + 1


=
√
u+C =
√
x2 − 9 + C
Solution 2: We have
Z


x
√
dx = 

x2 − 9

dx = d(3 sec θ)






dx = 3 sec θ tan θdθ
√
p
x2 − 9 = 9 sec2 θ − 9 = 9(sec2 θ − 1) = 9 tan2 θ = 3| tan θ| = 3 tan θ
Z
Z
3 sec θ
· 3 sec θ tan θdθ = 3 sec2 θdθ = 3 tan θ + C
=
3 tan θ
!
x
!! √
!
√
!
x2 − 9
x2 − 9
!!
!
tan θ =
!! θ
3
3
√
Z
x
x2 − 9 √ 2
√
= x −9+C
dx = 3
3
x2 − 9
Note that
Therefore
EXAMPLE 20: Find
Solution: We have
Z
x = 3 sec θ

Z
√
1
x2
−9
dx.
x = 3 sec θ



√
dx = 

x2 − 9

1
√
√
dx = d(3 sec θ)
dx = 3 sec θ tan θdθ
√
p
x2 − 9 = 9 sec2 θ − 9 = 9(sec2 θ − 1) = 9 tan2 θ = 3| tan θ| = 3 tan θ
Z
Z
1
· 3 sec θ tan θdθ = sec θdθ = [Example 8] = ln | sec θ + tan θ| + C1
=
3 tan θ
√
x
x2 − 9
Note that sec θ = and tan θ =
, therefore
3
3
√
Z
2 − 9
√
x
1
x
+ C1 = ln |x + x2 − 9| + C
√
dx = ln | sec θ + tan θ| + C1 = ln +
3
3
x2 − 9
√
√
16






Section 6.2 Trigonometric Integrals and Substitutions
2010 Kiryl Tsishchanka
Appendix I
EXAMPLE: Find
Z
sin3 xdx.
Solution 1: We have
"
Z
Z
sin3 xdx = sin2 x · sin xdx =
sin2 x = u
sin xdx = dv
2 sin x cos xdx = du
− cos x = v
2
= sin x(− cos x) −
2
= − sin x cos x + 2
2
= − sin x cos x + 2
2
= − sin x cos x + 2
2
= − sin x cos x + 2
Z
Z
Z
Z
Z
(− cos x) · 2 sin x cos xdx
sin x cos2 xdx
sin x(1 − sin2 x)dx
(sin x − sin3 x)dx
sin xdx − 2
2
= − sin x cos x − 2 cos x − 2
therefore
3
so
Z
#
Z
Z
sin3 xdx
sin3 xdx
sin3 xdx = − sin2 x cos x − 2 cos x + C1
1
2
sin3 xdx = − sin2 x cos x − cos x + C
3
3
Z
Solution 2: We have
Z
3
sin xdx =
=−
Z
Z
2
sin x · sin xdx =
Z

cos x = u

 d cos x = du
(1 − cos x) sin xdx = 
 − sin xdx = du

2
1
1
(1 − u2 )du = −u + u3 + C = − cos x + cos3 x + C
3
3
17
sin xdx = −du






Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE: Find
Z
2010 Kiryl Tsishchanka
sinn xdx.
Solution: We have
"
Z
Z
sinn xdx = sinn−1 x · sin xdx =
sinn−1 x = u
sin xdx = dv
(n − 1) sinn−2 x cos xdx = du
− cos x = v
= sin
therefore
n
so
Z
n−1
x(− cos x) −
= − sin
n−1
= − sin
n−1
= − sin
n−1
= − sin
n−1
n
sin xdx = − sin
n−1
Z
#
(− cos x) · (n − 1) sinn−2 x cos xdx
x cos x + (n − 1)
x cos x + (n − 1)
x cos x + (n − 1)
Z
Z
Z
sinn−2 x cos2 xdx
sinn−2 x(1 − sin2 x)dx
(sinn−2 x − sinn x)dx
x cos x + (n − 1)
Z
sin
x cos x + (n − 1)
Z
sinn−2 xdx
n−2
xdx − (n − 1)
Z
sinn xdx
Z
n−1
1
n−1
sinn−2 xdx
x cos x +
sin xdx = − sin
n
n
In particular, if n = 4 we have
Z
Z
1 3
3
4
sin xdx = − sin x cos x +
sin2 xdx
4
4
Z
1 3
1
3
1
= − sin x cos x +
− sin x cos x +
dx
4
4
2
2
Z
n
3
3
1
= − sin3 x cos x − sin x cos x + x + C
4
8
8
Alternatively,
Z
Z 1 − cos 2x
2
2
Z
1
sin xdx = (sin x) dx =
(1 − cos 2x)2 dx
dx =
4
Z
Z 1
1
1
2
=
(1 − 2 cos 2x + cos 2x)dx =
1 − 2 cos 2x + (1 + cos 4x) dx
4
4
2
Z 3
1
3
1
1
1
− 2 cos 2x + cos 4x dx = x − sin 2x +
sin 4x + C
=
4
2
2
8
4
32
4
Z
2
2
18
Section 6.2 Trigonometric Integrals and Substitutions
2010 Kiryl Tsishchanka
Similarly, if n = 5 we have
Z
Z
1 4
4
5
sin xdx = − sin x cos x +
sin3 xdx
5
5
1 4
1
4
= − sin x cos x +
− sin2 x cos x +
5
5
3
1
4
1
− sin2 x cos x −
= − sin4 x cos x +
5
5
3
2
3
Z
sin xdx
2
cos +C1
3
1
4
8
= − sin4 x cos x −
sin2 x cos x −
cos x + C
5
15
15
Alternatively,
Z
Z
Z
5
4
sin xdx = sin x · sin xdx = (sin2 x)2 · sin xdx
=
Z

cos x = u

 d cos x = du
(1 − cos x) sin xdx = 
 − sin xdx = du

2
2
sin xdx = −du
=−
Z


Z

 = − (1 − u2 )2 du


2
1
2
1
(1 − 2u2 + u4 )du = −u + u3 − u5 + C = − cos x + cos3 x − cos5 x + C
3
5
3
5
19
Section 6.2 Trigonometric Integrals and Substitutions
2010 Kiryl Tsishchanka
Appendix II
x 1
1 − cos x cos
x
= ln 1. ln tan
−
= ln sin x sin x = ln |csc x − cot x|
2
sin x 
π π 
x π 1 − cos x +
x+
1
+
sin
x
1
sin
x
2  = ln 2 = ln = ln 2. ln tan
+
+
= ln tan 
cos x cos x cos x π
2 4
2
sin x +
2
= ln |sec x + tan x|
1
3.
ln
2
1 − cos x
1 + cos x
1
= ln
2
(1 − cos x)2
(1 − cos x)(1 + cos x)
1
(1 − cos x)2
(1 − cos x)2
= ln
1 − cos2 x
2
sin2 x
2
1 − cos x 1 − cos x 1
1 − cos x
1
= ln = ln
= · 2 ln sin x 2
sin x
2
sin x 1
cos x = ln |csc x − cot x|
−
= ln sin x sin x 1
4.
ln
2
1 + sin x
1 − sin x
1
= ln
2
(1 + sin x)2
(1 − sin x)(1 + sin x)
1
= ln
2
1 + sin x
cos x
2
1
= ln
2
1
= ln
2
(1 + sin x)2
1 − sin2 x
1
= ln
2
1 + sin x 1 + sin x 1
= ln = · 2 ln cos x 2
cos x 1
sin
x
= ln |sec x + tan x|
= ln +
cos x cos x 20
(1 + sin x)2
cos2 x
Related documents