Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 80 Chapter 6 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 80 Lecture Notes Section 6.1 Section 6.1 Rational Exponents Principal and Negative Square Roots If a is a nonnegative number, then √ a is the principal square root and √ − a is the negative square root of a. Simplify. Assume that all variables represent positive numbers. a. d. √ 49 √ b. √ √ 0.64 e. √ g. − 36 h. r 0 c. √ z8 √ −36 16 81 f. 16x4 i. √ −2 9x12 Cube Root √ The cube root of a real number a is written as 3 a. a. d. √ 3 −1 √ 3 x12 b. e. √ 3 r 27 p 3 c. −8x6 f. Definition √ If n is a positive integer greater than 1 and n a is a real number, then √ a1/n = n a Section 6.1 continued on next page. . . 2 3 p 4 8 125 81x24 y 16 M. Ornelas Math 80 Lecture Notes Section 6.1 (continued) Use radical notation to write the following. Simplify if possible. a. 361/2 d. −251/2 b. 641/3 c. (−25)1/2 e. (125x9 )1/3 f. (81x8 )1/4 Write the radical with a rational exponent then simplify. a. p 3 x6 y 12 b. √ 4 81r8 s20 Definition If m and√n are positive integers greater than 1, then √ am/n = n am = n a Simplify as much as possible. a. 43/2 b. 82/3 c. −163/4 d. (−27)2/3 e. 16−3/4 f. (−64)−2/3 Section 6.1 continued on next page. . . 3 M. Ornelas Math 80 Lecture Notes Simplify as much as possible. a. x3/4 · x5/4 c. x7/8 x3/4 b. (y 2/3 )3/4 d. (27a3 b6 )1/3 (81a8 b−4 )1/4 b. p Section 6.2 Simplifying Radical Expressions Product Rule for Radicals √ √ √ n n n a · b = ab Quotient Rule for Radicals r √ n a a n = √ n b b Write the expressions in simplified form. a. c. √ 50 √ 3 40a5 b4 Section 6.2 continued on next page. . . d. 4 √ 3 48x4 y 3 54a6 b2 c4 Section 6.1 (continued) M. Ornelas Math 80 Lecture Notes Section 6.2 (continued) Rationalizing the Denominator Simplify. r r a. 3 2 b. 5 6 d. √ 2 3x √ 5y e. 3 √ 3 4 f. (−3)2 b. p 3 (−5)3 c. 25x2 e. p 4 (x − 2)4 f. c. 4 √ 3 r 3 2 9 √ Finding n an = |a| √ If n is even, then n an = |a| √ If n is odd, then n an = a Simplify. a. p √ d. √ 5 x4 p 5 (2x − 7)5 M. Ornelas Math 80 Lecture Notes Section 6.3 Section 6.3 Adding and Subtracting Radical Expressions Examples Add or subtract as indicated. Assume all variables represent positive real numbers. a. a. c. √ √ 3 17 + 5 17 √ √ b. √ √ 3 3 6 5z − 12 5z √ 20 + 2 45 b. √ √ 27x − 2 9x + 72x d. √ 3 c. √ √ 3 3 54 − 5 16 + 2 p 3 48y 4 + p 3 6y 4 Section 6.4 Multiplying and Dividing Radical Expressions Examples Multiply. a. √ 3(5 + √ 30) Section 6.4 continued on next page. . . b. 6 √ √ √ ( 2 − 5)( 6 − 2) √ √ √ 3 3 2+5 2−9 2 M. Ornelas c. Math 80 Lecture Notes √ ( 6 − 3)2 √ ( x + 2 + 3)2 d. Rationalizing Denominators Rationalize the denominator of each expression. a. 2 √ 5 r c. e. 3 1 2 2 3 2+4 √ b. √ 2 16 √ 9x d. √ f. √ 6+2 √ 6−2 7 5 3+2 Section 6.4 (continued) M. Ornelas Math 80 Lecture Notes Section 6.5 Section 6.5 Radical Equations Examples Solve. a. c. e. √ √ √ 2x − 3 = 9 b. −10x − 1 + 3x = 0 d. 4−x=x−2 f. Section 6.5 continued on next page. . . 8 √ 4x + 1 + 3 = 2 √ 3 √ 4 x+1+5 5x − 8 = √ 4 4x − 1 M. Ornelas Math 80 Lecture Notes Section 6.5 (continued) Section 6.6 Complex Numbers Imaginary Unit The imaginary unit, written i, is the number whose square is −1. That is, √ i = −1 and i2 = −1. Write with i notation. √ −49 a. b. Multiply or divide as indicated. √ √ a. −5 · −6 c. √ 125 · √ −5 √ √ c. − −20 −7 b. d. √ −16 · √ −1 √ −27 √ 3 Complex Number A complex number is a number that can be written in the form a + bi, where a and b are real numbers. Add or subtract the complex numbers. a. (3 − 5i) + (−8 + i) b. Section 6.6 continued on next page. . . 9 7i − (1 + 3i) M. Ornelas Multiply the complex numbers. a. 5i(3 + 2i) Math 80 Lecture Notes b. (2 + 3i)(5 − i) Section 6.6 (continued) c. (6 + 7i)(6 − 7i) Complex Conjugates The complex numbers (a + bi)(a − bi) are called complex conjugates of each other, and (a + bi)(a − bi) = a2 + b2 Divide. a. 5 3i b. 4−i 2+i Finding Powers of i Find the following powers of i. a. i9 b. i37 c. 10 i−56