Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Linnaeus University School of Computer Science, Physics and Mathematics Collection of formulas to the course Basic Mathematics Trigonometric formulas sin(−x) = − sin x sin(π − x) = sin x sin(π/2 − x) = cos x sin(x + y) = sin x cos y + cos x sin y sin x cos x cos(−x) = cos x cos(π − x) = − cos x cos(π/2 − x) = sin x cos(x + y) = cos x cos y − sin x sin y sin 2x = 2 sin x cos x 1 − cos 2x sin2 x = 2 cos 2x = 2 cos2 x − 1 = 1 − 2 sin2 x = cos2 x − sin2 x 1 + cos 2x cos2 x = 2 sin2 x + cos2 x = 1 tan x = x 0 cos x 1 sin x 0 π 6 √ 3 2 1 2 π 4 π 3 1 √ 2 1 √ 2 1 √2 3 2 π 2 π 0 −1 1 0 Exponential and logarithmic identities If a, b > 0 then: a0 = 1 ax+y = ax · ay (ax )y = axy (a · b)x = ax · bx ax ax−y = y a x aax = x b b a > 0, a 6= 1 then: a a log 1 = 0 log(x · y) =a log x +a log y x a a log( ) =a log x −a log y log(xy ) = y a log x y Factorial and binomial coefficient For each integer n = 1, 2, 3, . . . is n! = n(n − 1) · · · 3 · 2 · 1. For n = 0 we define 0! = 1. n! For all integers n, k where 0 ≤ k ≤ n is nk = k!(n−k)! If Binomial theorem For each natural number n: n X n n−k k n n 0 n n−1 1 n n−2 2 n 0 n n (x + y) = x y = x y + x y + x y + ··· + xy k 0 1 2 n k=0 Polar form Every complex number z = x + iy can be expressed as z = r(cos φ + i sin φ). Using Euler’s formula this can be written as z = reiφ .