Download Collection of formulas to the course Basic Mathematics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Linnaeus University
School of Computer Science, Physics and Mathematics
Collection of formulas to the course Basic Mathematics
Trigonometric formulas
sin(−x) = − sin x
sin(π − x) = sin x
sin(π/2 − x) = cos x
sin(x + y) = sin x cos y + cos x sin y
sin x
cos x
cos(−x) = cos x
cos(π − x) = − cos x
cos(π/2 − x) = sin x
cos(x + y) = cos x cos y − sin x sin y
sin 2x = 2 sin x cos x
1 − cos 2x
sin2 x =
2
cos 2x = 2 cos2 x − 1 = 1 − 2 sin2 x = cos2 x − sin2 x
1 + cos 2x
cos2 x =
2
sin2 x + cos2 x = 1
tan x =
x
0
cos x
1
sin x
0
π
6
√
3
2
1
2
π
4
π
3
1
√
2
1
√
2
1
√2
3
2
π
2
π
0
−1
1
0
Exponential and logarithmic identities
If
a, b > 0 then:
a0 = 1
ax+y = ax · ay
(ax )y = axy
(a · b)x = ax · bx
ax
ax−y = y
a x aax
= x
b
b
a > 0, a 6= 1 then:
a
a
log 1 = 0
log(x · y) =a log x +a log y
x
a
a
log( ) =a log x −a log y
log(xy ) = y a log x
y
Factorial and binomial coefficient
For each integer n = 1, 2, 3, . . . is n! = n(n − 1) · · · 3 · 2 · 1. For n = 0 we define 0! = 1.
n!
For all integers n, k where 0 ≤ k ≤ n is nk = k!(n−k)!
If
Binomial theorem
For each natural number n:
n X
n n−k k
n n 0
n n−1 1
n n−2 2
n 0 n
n
(x + y) =
x y =
x y +
x y +
x y + ··· +
xy
k
0
1
2
n
k=0
Polar form
Every complex number z = x + iy can be expressed as z = r(cos φ + i sin φ). Using Euler’s
formula this can be written as z = reiφ .
Related documents