Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
1050 Exam 3 Review x) 2 x − 3 and g ( x= 1. Let f (= ) 2 x + 3 . Find each of the following: a. ( f g )( x) Domain: _______________ 2 b. ( f g )(−3) 2. If f ( x) = 2 2x + 1 and g ( x) = find ( f g )( x) and the domain. x+3 x +1 3. Show that f (x) and g (x) are inverses by finding ( f g )( x) and ( g f )( x) . f ( x) = 2 − x 3 and g ( x) = 3 2 − x 4. a. Find the inverse of the function: f ( x) = x 2 + 2 x≥0 b. Graph both f (x) and f coordinate plane. −1 ( x) on the same y x f −1 ( x) =_______________ Domain of f −1 ( x) _______________ 5. a. Find the inverse of the function: f ( x) = x 3 − 1 b. Graph both f (x) and f coordinate plane. −1 ( x) on the same y x f −1 ( x) =_______________ Evaluate each log using the change of base. 7. log 8 15 = ___________ 6. log 25 80 = _________ Evaluate each log using the properties of logs (without a calculator). 8. log 7 7 9. log 2 16 11. ln e x 10. log 5 1 Use the properties of logs to expand as far as possible. 8x 2 12. log 6 ( yz ) 3 13. log 2 4 yz 14. ln 5x 3 y Condense each expression to a single logarithm. 15. 4 log 3 x + 2 log 3 y − 4 log 3 z 16. 1 ln x + 2 ln( x + 1) − ln( x − 2) 3 Graph the following. Give the domain, range, and asymptote of each. 17. f ( x) = 4 x 18. f ( x) = 4 ( x + 2 ) − 3 y y Domain: x Range: Asymptote: Domain: x Range: Asymptote: 20. f ( x) = log 4 ( x + 3) + 1 19. f ( x) = log 4 x y Domain: y Range: x 20. graph #2 y x Asymptote: 𝑥𝑥+5 20. graph both from #3 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥+5 Domain: y Range: x x Solve for x. 22. 3 x +5 − 1 = 6 25. 3 + 4 log 4 x = 10 Asymptote: 23. 2e x + 6 = 38 24. 2 7 x −5 = 16 x 26. 5ln (2x) = 35 27. log 2 ( x + 3) + log 2 ( x − 3) = 4 28. You borrow $3500 at an interest rate of 4.5%. What will your final balance be at the end of 3 years if you compound a. Monthly: b. Continuously: 29. Determine the time necessary for $1,000 to double if it is invested at 6% interest rate compounded continuously. 30. A bacteria culture contains 250 bacteria. If the number of bacteria grows to 300 in 5 hours, find the rate of growth. How long will it take the population to double in size? Rate = ________________ (don’t round) 31. Solve by Gaussian Elimination a. x + y + z = 1 3 x − y − z = 11 x + 3y = 0 b. x + 4 y − 2 z = −3 2 x − y + 5 z = 12 length of time to double = ____________________ (round to 2 decimal places) 32. Find the value of the determinant 6 −2 −4 −2 33. Solve by finding the determinants and using Cramer’s Rule. x + 2 y − z = −4 x + 4 y − 2 z = −6 2x + 3y + z = 3 a. A − 3B 0 1 − 2 1 , C = 4 3 and find: 0 − 1 0 b. 3 A + 2 B c. BC d. CA 4 5 34. For the matrices A =− 4 −4 1 2 4 4 4 0 , B = 3 2 1 − 2 0 35. Solve the equation using Matrix Algebra. 2x − 6 y = 0 x − 2y = 2 Solve the non-linear systems by substitution or elimination. x2 − y = 7 x 2 + y 2 = 13 37. 36. 2x2 + y 2 = 17 x2 − y2 = 5 Review Answers 1. a. 8 x 2 + 24 x + 15 4. f −1 D: R b. 15 ( x) = x − 2 −1 5. f D:x≥ 2 2. x+5 3x + 5 ( x) = 3 x + 1 D : R, x ≠ −1, 6. 1.361 −5 3 3. Show every step! 7. 1.302 8. 1 9. 4 10. 0 11. x y 12. 3(log 6 y + log 6 z ) y 13. 3 + 2 log 2 x − log 2 y − 4 log 2 z x x 14. 1 ln 5 + 3 ln x − ln y 2 15. log 3 17. Domain: (−∞, ∞) 18 Domain: (−∞, ∞) Range: (0, ∞) Range: (−3, ∞) Asymptote: y = 0 Asymptote: y = −3 x 24. x = 5 3 23. x = 2.773 26. x = 548.317 27. x = 5 , -5 28. a. $4004.87 b. $4005.88 30. Rate = .036464311 time = 19.01 hours 33. (−2, 1, 4) y x 22. x = −3.229 x 25. x = 11.314 29. t = 11.552 years 31. a. (3, −1, −1) b. (−2z + 5, z – 2, z) 34.a. −7 −8 4 b. 23 20 12 −6 −8 2 −13 −10 −3 5 2 0 −2 8 0 37. x ( x + 1) 2 x−2 y x 35. (6, 2) 36. (3, 2, 1) 3 16. ln 19. Domain: (0, ∞) 20. Domain: (−3, ∞) Range: (−∞, ∞) Range: (−∞, ∞) Asymptote: x = 0 Asymptote: x = -3 y y x4 y2 z4 c. (2,−3) (−2,−3) (2 2 ,1) (−2 2 ,1) 20 4 d. Not possible Wrong Orders 11 − 1 − 7 − 8 32. −20