Download ALGEBRA

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ALGEBRA
Factors and Zeros of Polynomials
Let px an x n an1x n1 . . . a1x a0 be a polynomial. If pa 0, then a is a zero of the
polynomial and a solution of the equation px 0. Furthermore, x a is a factor of the polynomial.
Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these
zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.
Quadratic Formula
If px ax 2 bx c, and 0 ≤ b2 4ac, then the real zeros of p are x b ± b2 4ac2a.
Special Factors
x 2 a 2 x ax a
x 3 a 3 x ax 2 ax a 2
x 3 a3 x ax 2 ax a 2
x 4 a 4 x 2 a 2x 2 a 2
Binomial Theorem
x y2 x 2 2xy y 2
x y2 x 2 2xy y 2
x y3 x 3 3x 2y 3xy 2 y 3
x y3 x 3 3x 2y 3xy 2 y 3
x y4 x 4 4x 3y 6x 2y 2 4xy3 y 4
x y4 x 4 4x 3y 6x 2y 2 4xy 3 y 4
nn 1 n2 2 . . .
x
y nxy n1 y n
2!
nn 1 n2 2 . . .
x yn x n nx n1y x
y ± nxy n1 y n
2!
x yn x n nx n1y Rational Zero Theorem
If px an x n a n1x n1 . . . a1x a0 has integer coefficients, then every
rational zero of p is of the form x rs, where r is a factor of a0 and s is a factor of an.
Factoring by Grouping
acx 3 adx 2 bcx bd ax 2cx d bcx d ax 2 bcx d
Arithmetic Operations
ab ac ab c
ab a d ad
c
d b c bc
b
ab
a c
c
a
c
ad bc
b d
bd
a
b
a
c
bc
ab a b
c
c
c
ab ba
cd
dc
ab ac
bc
a
a
ac
b
b
c
Exponents and Radicals
a0 1,
ab
x
a0
ax
bx
ab x a xb x
a xa y a xy
n am amn
ax © Houghton Mifflin Company, Inc.
1
ax
a a12
ax
a xy
ay
n a a1n
n
n a
n b
ab axy a xy
ab n
n a
n b
DERIVATIVES AND INTEGRALS
Basic Differentiation Rules
1.
4.
7.
10.
13.
16.
19.
22.
25.
28.
31.
34.
d
cu cu
dx
d u
vu uv
dx v
v2
d
x 1
dx
d u
e eu u
dx
d
sin u cos uu
dx
d
cot u csc2 uu
dx
d
u
arcsin u dx
1 u2
d
u
arccot u dx
1 u2
d
sinh u cosh uu
dx
d
coth u csch2 uu
dx
d
u
sinh1 u dx
u2 1
d
u
coth1 u dx
1 u2
2.
5.
8.
11.
14.
17.
20.
23.
26.
29.
32.
35.
d
u ± v u ± v
dx
d
c 0
dx
d
u
u
u , u 0
dx
u
d
u
loga u dx
ln au
d
cos u sin uu
dx
d
sec u sec u tan uu
dx
d
u
arccos u dx
1 u2
d
u
arcsec u dx
u u2 1
d
cosh u sinh uu
dx
d
sech u sech u tanh uu
dx
d
u
cosh1 u dx
u2 1
d
u
sech1 u dx
u1 u2
3.
5.
7.
9.
11.
13.
15.
17.
kf u du k f u du
2.
du u C
4.
eu du eu C
6.
cos u du sin u C
8.
cot u du ln sin u C
10.
csc u du ln csc u cot u C
12.
csc2 u du cot u C
14.
csc u cot u du csc u C
16.
du
1
u
arctan C
2
u
a
a
18.
a2
© Houghton Mifflin Company, Inc.
6.
9.
Basic Integration Formulas
1.
3.
12.
15.
18.
21.
24.
27.
30.
33.
36.
d
uv uv vu
dx
d n
u nu n1u
dx
d
u
ln u dx
u
d u
a ln aau u
dx
d
tan u sec2 uu
dx
d
csc u csc u cot uu
dx
d
u
arctan u dx
1 u2
d
u
arccsc u dx
u u2 1
d
tanh u sech2 uu
dx
d
csch u csch u coth uu
dx
d
u
tanh1 u dx
1 u2
u
d
csch1 u dx
u 1 u2
f u ± gu du au du ln1aa
u
f u du ±
C
sin u du cos u C
tan u du ln cos u C
sec u du ln sec u tan u C
sec2 u du tan u C
sec u tan u du sec u C
du
u
C
a
du
1
u
arcsec
C
2
2
a
a
uu a
a2 u2
arcsin
gu du
FORMULAS FROM GEOMETRY
Triangle
Sector of Circular Ring
h a sin 1
Area bh
2
(Law of Cosines)
c
p average radius,
w width of ring,
in radians
Area pw
a
θ
h
b
c2 a 2 b2 2ab cos c
(Pythagorean Theorem)
a2
Area ab
a
b2
Equilateral Triangle
Area s
h
4
A
Right Circular Cone
r 2h
3
Lateral Surface Area rr2 h2
h
h
Volume b
h
Area a b
2
h
s
Parallelogram
Trapezoid
a
A area of base
Ah
Volume 3
s
3s2
Area bh
a 2 b2
2
Cone
3s
2
r
Frustum of Right Circular Cone
a
h
a
h
r
rR h
3
Lateral Surface Area sR r
Volume b
b
r2
R2
s
h
Right Circular Cylinder
Circle
r2
Area Circumference 2 r
Volume r 2h
Lateral Surface Area 2 rh
r
Sector of Circle
in radians
r2
Area 2
s r
w
b
Circumference 2
b
h
θ
Ellipse
Right Triangle
c2
p
R
r
h
Sphere
4
Volume r 3
3
Surface Area 4 r 2
s
θ
r
Circular Ring
p average radius,
w width of ring
Area R 2 r 2
2 pw
© Houghton Mifflin Company, Inc.
r
Wedge
r
p
R
w
A area of upper face,
B area of base
A B sec A
θ
B
TRIGONOMETRY
Definition of the Six Trigonometric Functions
Opposite
Right triangle definitions, where 0 < < 2.
opp
hyp
sin csc e
s
u
hyp
opp
en
pot
Hy
adj
hyp
cos sec θ
hyp
adj
Adjacent
opp
adj
tan cot adj
opp
Circular function definitions, where is any angle.
y
r
y
sin csc r = x2 + y2
r
y
(x, y)
x
r
r
cos sec θ
y
r
x
x
y
x
x
cot tan x
y
Reciprocal Identities
1
sin x csc x
1
csc x sin x
1
sec x cos x
1
cos x sec x
sin x
cos x
cot x cos x
sin x
Pythagorean Identities
sin2 x cos2 x 1
1 tan2 x sec2 x
(− 12 , 23 ) π (0, 1) ( 12 , 23 )
90°
(− 22 , 22 ) 3π 23π 2 π3 π ( 22 , 22 )
120°
60°
4 π
45°
(− 23 , 12) 56π 4150°135°
( 23 , 21)
6
30°
(− 1, 0) π 180°
210°
330°
1 cot2 x csc2 x
sin 2u 2 sin u cos u
cos 2u cos2 u sin2 u 2 cos2 u 1 1 2 sin2 u
2 tan u
tan 2u 1 tan2 u
Power-Reducing Formulas
1 cos 2u
2
1 cos 2u
2
cos u 2
1
cos
2u
tan2 u 1 cos 2u
sin2 u Sum-to-Product Formulas
2 x cos x
csc x sec x
2
sec x csc x
2
sin u sin v 2 sin
2 x sin x
tan x cot x
2
cot x tan x
2
cos
Reduction Formulas
sinx sin x
cscx csc x
secx sec x
x
(− 23 , − 12) 76π 5π 225°240° 300°315°7π 116π ( 23 , − 21)
(− 22 , − 22 ) 4 43π 270° 32π 53π 4 ( 22 , − 22 )
1
3
(0, − 1) ( 2 , − 2 )
(− 12 , − 23 )
Cofunction Identities
sin
0° 0
360° 2π (1, 0)
Double -Angle Formulas
1
tan x cot x
1
cot x tan x
Tangent and Cotangent Identities
tan x y
cosx cos x
tanx tan x
cotx cot x
Sum and Difference Formulas
sinu ± v sin u cos v ± cos u sin v
cosu ± v cos u cos v sin u sin v
tan u ± tan v
tanu ± v 1 tan u tan v
© Houghton Mifflin Company, Inc.
u 2 v cosu 2 v
uv
uv
sin u sin v 2 cos
sin
2 2 uv
uv
cos u cos v 2 cos
cos
2 2 uv
uv
cos u cos v 2 sin
sin
2 2 Product-to-Sum Formulas
1
sin u sin v cosu v cosu v
2
1
cos u cos v cosu v cosu v
2
1
sin u cos v sinu v sinu v
2
1
cos u sin v sinu v sinu v
2
Related documents