Download Optics I

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The Hong Kong Polytechnic University Superposition of Light Waves
Principle of Superposition:
When two waves meet at a particular point in space, the resultant disturbance is
simply the algebraic sum of the constituent disturbance.
Addition of Waves of the Same Frequency:
 2  E2 sin kx  t   2 
 1  E1 sin kx  t  1 
Let 1  kx   1
 2  kx   2
We have  1  E1 sin 1  t 
 2  E2 sin  2  t 
Resultant   1  2  E sin   t   E sin kx  t   
E 2  E12  E22  2E1 E2 cos 2  1 
E1 sin 1  E2 sin  2
tan  
E1 cos 1  E2 cos  2
tan  
I  I1  I 2  2 I1 I 2 cos 2  1 
E1 sin  1  E2 sin  2
E1 cos  1  E2 cos  2
interference term
Two waves in phase result in total constructive interference: I max  I1  I 2  2 I1 I 2
Two waves anti-phase result in total destructive interference: I min  I1  I 2  2 I1 I 2
Optics II----by Dr.H.Huang, Department of Applied Physics
1
The Hong Kong Polytechnic University Superposition of Light Waves
Coherent: Initial phase difference 2-1 is constant.
Incoherent: Initial phase difference 2-1 varies randomly with time.
Phase difference for two waves at distance x1 and x2 from their sources,
  kx2  t   2   kx1  t   1   k x2  x1    2  1 
in a medium:  
2
m
x2  x1    2   1   2 nx2  x1    2   1 

Optical Path Difference (OPD): n(x2-x1)
Optical Thickness or Optical Path Length (OPL): nt
Optics II----by Dr.H.Huang, Department of Applied Physics
2
The Hong Kong Polytechnic University Superposition of Light Waves
Phasor Diagram:
Each wave can be represented by a vector with a
magnitude equal to the amplitude of the wave. The
vector forms between the positive x-axis an angle
equal to the phase angle .
 1  E01 sin t  1 
 2  E02 sin t   2 
Suppose:    1   2  E0 sin t   
E0 
E01 cos 1  E02 cos  2 2  E01 sin 1  E02 sin  2 2
E01 sin 1  E02 sin  2
tan  
E01 cos 1  E02 cos  2
For multiple waves:
N
   E0i sin t   i   E0 sin t   
i 1
E0 
X 2 Y2
N
X   E 0i cos  i
i 1
and
tan   Y X
N
Y   E0i sin  i
i 1
Optics II----by Dr.H.Huang, Department of Applied Physics
3
The Hong Kong Polytechnic University Superposition of Light Waves
Example:
Find the resultant of adding the sine waves:
 2  10 sin t   4
 1  20 sin t
X  20 cos 0  10 cos
Y  0  10 sin
 3  10 sin t   12  4  15sin t  2 3

2
  
 10 cos    15 cos
 29.23
4
3
 12 

2
  
 10 sin     15 sin
 17.47
4
3
 12 
E  X 2  Y 2  34
  34 sin t   6
  tan 1 Y X  30
Example:
Find, using algebraic addition, the amplitude and phase resulting from the addition of the two
superposed waves  1  E1 sin kx  t  1  and  2  E2 sin kx  t   2  , where 1=0,
2=/2, E1=8, E2=6, and x=0.
1  kx  1  0
  arctan
 2  kx   2   2
E  E12  E22  2 E1 E2 cos 2  1   10
E1 sin 1  E2 sin  2
 arctan 0.75  36.87 
E1 cos 1  E2 cos  2
  10 sin kx  t  0.6435
Optics II----by Dr.H.Huang, Department of Applied Physics
4
The Hong Kong Polytechnic University Superposition of Light Waves
Example:
Two waves  1  E1 sin kx  t  and  2  E2 sin kx  t    are coplanar and overlap.
Calculate the resultant’s amplitude if E1=3 and E2=2.
E 2  E12  E22  2 E1 E2 cos 2  1 
 32  22  2  3  2  cos   1
E 1
Example:
Show that the optical path length, or more simply the optical path, is equivalent to the length
of the path in vacuum which a beam of light of wavelength  would traverse in the same time.
time 
distance d
d
nd
 

speed
v cn c
Optics II----by Dr.H.Huang, Department of Applied Physics
5
The Hong Kong Polytechnic University Superposition of Light Waves
Standing Wave;
Suppose two waves:  I  E0 I sin kx  t   I  and  R  E0 R sin kx  t   R 
having the same amplitude E0I=E0R and zero initial phase angles.
   1  2  2E0 I sin kx cos t

Nodes at: x  n ,
2
n  0, 1, 2, 3,....
1

x

n

Antinodes at:

 ,
2 2

nodes or
nodal points
antinodes
n  0, 1, 2, 3,....
Optics II----by Dr.H.Huang, Department of Applied Physics
6
The Hong Kong Polytechnic University Superposition of Light Waves
Addition of Waves of Different Frequency:
 2  E1 cosk2 x  2t 
 1  E1 cosk1 x  1t 
   1  2  2 E1 cosk p x   p t cosk g x   g t 
p 
1  2
2
Group velocity:
g 
vg 
1  2
2
g
kg

dispersion relation =(k)
1   2
k1  k 2

vg 

k
d
dk
Optics II----by Dr.H.Huang, Department of Applied Physics
7
The Hong Kong Polytechnic University Superposition of Light Waves
Coherence:
Frequency bandwidth:    1  2
Coherent time: t 
1

Coherent length: x  ct
Example:
(a) How many vacuum wavelengths of =500 nm will span space of 1 m in a vacuum? (b)
How many wavelengths span the gap when the same gap has a 10 cm thick slab of glass
(ng=1.5) inserted in it? (c) Determine the optical path difference between the two cases. (d)
Verify that OPD/ is the difference between the answers to (a) and (b).
1
6

2

10
500 10 9
(b) : OPL  n1d1  n2d2  1 0.90  1.5  0.10  1.05 m
OPL
1.05
6
number of wavelengt hs 


2
.
1

10

500 10 9
(c) : OPD  1.05  1  0.05 m
OPD
0.05
5
6
6
(d ) :


10

2
.
1

10

2
.
0

10

500 10 9
(a) : number of wavelengt hs 
Optics II----by Dr.H.Huang, Department of Applied Physics
8
The Hong Kong Polytechnic University Superposition of Light Waves
Example:
In the figure, two waves 1 and 2 both have vacuum wavelengths of 500 nm. The waves
arise from the same source and are in phase initially. Both waves travel an actual distance of
1 m but 2 passes through a glass tank with 1 cm thick walls and a 20 cm gap between the
walls. The tank is filled with water (nw=1.33) and the glass has refractive index ng=1.5. Find
the OPD and the phase difference when the waves have traveled the 1 m distance.
OPL1  nd  1 m
OPL2  na d1  d 5   ng d 2  d 4   nw d 3
 1 0.78  1.5  0.02  1.33  0.20
 1.076 m
OPD  OPL2  OPL1  0.076 m
number of wavelengt hs 
  2 
OPD

OPD


0.076
5

1
.
52

10
500 10 9
 9.55 105 radian
Optics II----by Dr.H.Huang, Department of Applied Physics
9
The Hong Kong Polytechnic University Superposition of Light Waves
Example:
Show that the standing wave s(x,t) is periodic with time. That is, show that s(x,t)=
s(x,t+).
 s x, t   2E sin kx cos t
 s x, t     2 E sin kx cos  t   
 2 E sin kx cost   
 2 E sin kx cost  2 
 2 E sin kx cos t
  s  x, t 
Homework: 11.1; 11.3; 11.4; 11.5; 11.6
Optics II----by Dr.H.Huang, Department of Applied Physics
10
Related documents