Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The Hong Kong Polytechnic University Superposition of Light Waves Principle of Superposition: When two waves meet at a particular point in space, the resultant disturbance is simply the algebraic sum of the constituent disturbance. Addition of Waves of the Same Frequency: 2 E2 sin kx t 2 1 E1 sin kx t 1 Let 1 kx 1 2 kx 2 We have 1 E1 sin 1 t 2 E2 sin 2 t Resultant 1 2 E sin t E sin kx t E 2 E12 E22 2E1 E2 cos 2 1 E1 sin 1 E2 sin 2 tan E1 cos 1 E2 cos 2 tan I I1 I 2 2 I1 I 2 cos 2 1 E1 sin 1 E2 sin 2 E1 cos 1 E2 cos 2 interference term Two waves in phase result in total constructive interference: I max I1 I 2 2 I1 I 2 Two waves anti-phase result in total destructive interference: I min I1 I 2 2 I1 I 2 Optics II----by Dr.H.Huang, Department of Applied Physics 1 The Hong Kong Polytechnic University Superposition of Light Waves Coherent: Initial phase difference 2-1 is constant. Incoherent: Initial phase difference 2-1 varies randomly with time. Phase difference for two waves at distance x1 and x2 from their sources, kx2 t 2 kx1 t 1 k x2 x1 2 1 in a medium: 2 m x2 x1 2 1 2 nx2 x1 2 1 Optical Path Difference (OPD): n(x2-x1) Optical Thickness or Optical Path Length (OPL): nt Optics II----by Dr.H.Huang, Department of Applied Physics 2 The Hong Kong Polytechnic University Superposition of Light Waves Phasor Diagram: Each wave can be represented by a vector with a magnitude equal to the amplitude of the wave. The vector forms between the positive x-axis an angle equal to the phase angle . 1 E01 sin t 1 2 E02 sin t 2 Suppose: 1 2 E0 sin t E0 E01 cos 1 E02 cos 2 2 E01 sin 1 E02 sin 2 2 E01 sin 1 E02 sin 2 tan E01 cos 1 E02 cos 2 For multiple waves: N E0i sin t i E0 sin t i 1 E0 X 2 Y2 N X E 0i cos i i 1 and tan Y X N Y E0i sin i i 1 Optics II----by Dr.H.Huang, Department of Applied Physics 3 The Hong Kong Polytechnic University Superposition of Light Waves Example: Find the resultant of adding the sine waves: 2 10 sin t 4 1 20 sin t X 20 cos 0 10 cos Y 0 10 sin 3 10 sin t 12 4 15sin t 2 3 2 10 cos 15 cos 29.23 4 3 12 2 10 sin 15 sin 17.47 4 3 12 E X 2 Y 2 34 34 sin t 6 tan 1 Y X 30 Example: Find, using algebraic addition, the amplitude and phase resulting from the addition of the two superposed waves 1 E1 sin kx t 1 and 2 E2 sin kx t 2 , where 1=0, 2=/2, E1=8, E2=6, and x=0. 1 kx 1 0 arctan 2 kx 2 2 E E12 E22 2 E1 E2 cos 2 1 10 E1 sin 1 E2 sin 2 arctan 0.75 36.87 E1 cos 1 E2 cos 2 10 sin kx t 0.6435 Optics II----by Dr.H.Huang, Department of Applied Physics 4 The Hong Kong Polytechnic University Superposition of Light Waves Example: Two waves 1 E1 sin kx t and 2 E2 sin kx t are coplanar and overlap. Calculate the resultant’s amplitude if E1=3 and E2=2. E 2 E12 E22 2 E1 E2 cos 2 1 32 22 2 3 2 cos 1 E 1 Example: Show that the optical path length, or more simply the optical path, is equivalent to the length of the path in vacuum which a beam of light of wavelength would traverse in the same time. time distance d d nd speed v cn c Optics II----by Dr.H.Huang, Department of Applied Physics 5 The Hong Kong Polytechnic University Superposition of Light Waves Standing Wave; Suppose two waves: I E0 I sin kx t I and R E0 R sin kx t R having the same amplitude E0I=E0R and zero initial phase angles. 1 2 2E0 I sin kx cos t Nodes at: x n , 2 n 0, 1, 2, 3,.... 1 x n Antinodes at: , 2 2 nodes or nodal points antinodes n 0, 1, 2, 3,.... Optics II----by Dr.H.Huang, Department of Applied Physics 6 The Hong Kong Polytechnic University Superposition of Light Waves Addition of Waves of Different Frequency: 2 E1 cosk2 x 2t 1 E1 cosk1 x 1t 1 2 2 E1 cosk p x p t cosk g x g t p 1 2 2 Group velocity: g vg 1 2 2 g kg dispersion relation =(k) 1 2 k1 k 2 vg k d dk Optics II----by Dr.H.Huang, Department of Applied Physics 7 The Hong Kong Polytechnic University Superposition of Light Waves Coherence: Frequency bandwidth: 1 2 Coherent time: t 1 Coherent length: x ct Example: (a) How many vacuum wavelengths of =500 nm will span space of 1 m in a vacuum? (b) How many wavelengths span the gap when the same gap has a 10 cm thick slab of glass (ng=1.5) inserted in it? (c) Determine the optical path difference between the two cases. (d) Verify that OPD/ is the difference between the answers to (a) and (b). 1 6 2 10 500 10 9 (b) : OPL n1d1 n2d2 1 0.90 1.5 0.10 1.05 m OPL 1.05 6 number of wavelengt hs 2 . 1 10 500 10 9 (c) : OPD 1.05 1 0.05 m OPD 0.05 5 6 6 (d ) : 10 2 . 1 10 2 . 0 10 500 10 9 (a) : number of wavelengt hs Optics II----by Dr.H.Huang, Department of Applied Physics 8 The Hong Kong Polytechnic University Superposition of Light Waves Example: In the figure, two waves 1 and 2 both have vacuum wavelengths of 500 nm. The waves arise from the same source and are in phase initially. Both waves travel an actual distance of 1 m but 2 passes through a glass tank with 1 cm thick walls and a 20 cm gap between the walls. The tank is filled with water (nw=1.33) and the glass has refractive index ng=1.5. Find the OPD and the phase difference when the waves have traveled the 1 m distance. OPL1 nd 1 m OPL2 na d1 d 5 ng d 2 d 4 nw d 3 1 0.78 1.5 0.02 1.33 0.20 1.076 m OPD OPL2 OPL1 0.076 m number of wavelengt hs 2 OPD OPD 0.076 5 1 . 52 10 500 10 9 9.55 105 radian Optics II----by Dr.H.Huang, Department of Applied Physics 9 The Hong Kong Polytechnic University Superposition of Light Waves Example: Show that the standing wave s(x,t) is periodic with time. That is, show that s(x,t)= s(x,t+). s x, t 2E sin kx cos t s x, t 2 E sin kx cos t 2 E sin kx cost 2 E sin kx cost 2 2 E sin kx cos t s x, t Homework: 11.1; 11.3; 11.4; 11.5; 11.6 Optics II----by Dr.H.Huang, Department of Applied Physics 10