Download Unit 8.2 Relationships Between Sine, Cosine and Tangent

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Unit 8.2
Relationships Between Sine, Cosine and Tangent
Sine and Cosine
Consider triangle ABC:
ο‚·
Since the sum of the interior angles of a triangle must add up to 180°, the two acute
angles of a right triangle must add to 90°.
Angle A + Angle B = 90°
ο‚·
Angle A = 90° - Angle B
Angle B = 90° - Angle A
Using the trigonometric ratios for right triangles, the following ratios from β–²ABC can be
obtained:
π‘Ž
𝑏
 Sin A = = Cos B
Cos A = = Sin B
𝑐
𝑐
So,
Sin ΞΈ = cos(90° - ΞΈ)
and
Cos ΞΈ = sin(90° - ΞΈ)
sin 30° = cos 60°
and
cos 30° = sin 60°
sin 55° = cos 35°
and
cos 55° = sin 35°
For Example:
Tangent
Using the trigonometric ratios for right triangles, the following ratios from β–²ABC can be
obtained:
Tan B =
𝑏
π‘Ž
sin B =
𝑏
𝑐
cos B =
π‘Ž
𝑐
So,
sin 𝐡
cos 𝐡
=
𝑏
𝑐
π‘Ž
𝑐
=
𝑏
π‘Ž
= tan B
Therefore,
tan ΞΈ =
sin πœƒ
cos πœƒ
Sine2 and Cosine2
Consider Pythagoras’ Theorem:
ο‚·
ο‚·
a2 + b2 = c2
Again we can use our trigonometric ratios for right triangles
The following ratios can be obtained:
sin B =
cos B =
𝑏
𝑐
π‘Ž
𝑐
b = c(sin B)
b2 = c2(sin2B)
a = c(cos B)
a2 = c2(cos2B)
* Note: (sin B)2 is usually written as sin2B, (cos B)2 is usually written as cos2 B
By substitution:
a2 + b2 = c2
c2sin2B + c2cos2B = c2
sin2B + cos2B = 1
So….
Sin2ΞΈ + Cos2ΞΈ = 1
Sine, Cosine and Tangent
If sin ΞΈ + cos ΞΈ = 1,
2
So…
2
tan2ΞΈ + 1 =
then
1
cos2 ΞΈ
sin2 ΞΈ
cos2 ΞΈ
+
cos2 ΞΈ
cos2 ΞΈ
=
1
cos2 ΞΈ
Summary
1. SinΞΈ = cos(90° - ΞΈ)
2. SinΞΈ = cos(90° - ΞΈ)
3. TanΞΈ =
π‘ π‘–π‘›πœƒ
π‘π‘œπ‘ πœƒ
4. Sin2ΞΈ + cos2ΞΈ = 1
5. Tan2ΞΈ + 1 =
1
cos2 ΞΈ
*
3
Example 1:
Given sinΞΈ =
Solution 1:
Draw a right triangle with acute angle ΞΈ opposite side of length 3, and
hypotenuse of length 5. SOH CAH TOA
5
is an acute angle, find the exact value of cosΞΈ and tanΞΈ.
5
3
ΞΈ
a
Method 1:
Method 2:
By PYTHAGORUS’ Theorem
sin2ΞΈ + cos2 ΞΈ = 1
a2 + b2 = c2
3
( )2 + cos2ΞΈ = 1
5
a2 + 32 = 52
3
cos2ΞΈ = 1 – ( )2
5
a = 25 – 9
2
a2 = 16
cos2ΞΈ = 1 -
9
25
=
25
-
9
25 25
a=4
cosθ = √
So,
𝒂𝒅𝒋𝒂𝒄𝒆𝒏𝒕
cosΞΈ = π’‰π’šπ’‘π’π’•π’†π’π’–π’”π’†
=
π’π’‘π’‘π’π’”π’Šπ’•π’†
tanΞΈ = 𝒂𝒅𝒋𝒂𝒄𝒆𝒏𝒕
=
πŸ‘
πŸ’
16
25
=
πŸ’
πŸ“
πŸ’
πŸ“
3
𝑠𝑖𝑛θ 5 πŸ‘
tanΞΈ =
=
=
π‘π‘œπ‘ ΞΈ 4 πŸ’
5
=
16
25
2
, find the exact value of sinΞΈ and tanΞΈ.
Example 2:
Given cosΞΈ =
Solution 2:
Draw a right triangle with acute angle ΞΈ adjacent side of length 2, and
hypotenuse of length 3. SOH CAH TOA
3
3
b
ΞΈ
2
Method 1:
Method 2:
By PYTHAGORUS’ Theorem
sin2ΞΈ + cos2 ΞΈ = 1
a2 + b2 = c2
2
sin2ΞΈ + ( )2 = 1
3
22 + b2 = 32
2
sin2ΞΈ = 1 – ( )2
3
a =9–4
2
a2 = 5
sin2ΞΈ = 1 -
4
9
=
9 4 5
- =
9 9 9
=
βˆšπŸ“
πŸ‘
a = √5
sinθ = √
So,
π’π’‘π’‘π’π’”π’Šπ’•π’†
sinΞΈ = π’‰π’šπ’‘π’π’•π’†π’π’–π’”π’†
=
π’π’‘π’‘π’π’”π’Šπ’•π’†
tanΞΈ = 𝒂𝒅𝒋𝒂𝒄𝒆𝒏𝒕
=
βˆšπŸ“
πŸ‘
βˆšπŸ“
𝟐
5
9
√5
𝑠𝑖𝑛θ
3 βˆšπŸ“
tanΞΈ =
= 2 =
π‘π‘œπ‘ ΞΈ
𝟐
3
Related documents