Download Earliest Datable Records of Aurora

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Chinese astronomy wikipedia , lookup

Timeline of astronomy wikipedia , lookup

History of astronomy wikipedia , lookup

Archaeoastronomy wikipedia , lookup

Astronomical unit wikipedia , lookup

Tropical year wikipedia , lookup

Advanced Composition Explorer wikipedia , lookup

Transcript
Earliest Datable Records of Aurora-like Phenomena in the
Astronomical Diaries from Babylonia
Author #1: Hisashi Hayakawa, Graduate School of Letters, Kyoto University, Kyoto, Japan,
[email protected]
Author #2: Yasuyuki Mitsuma, Graduate School of Arts and Sciences, The University of Tokyo,
Tokyo, Japan, [email protected]
Author #3: Yusuke Ebihara, Research Institute for Sustainable Humanosphere, Kyoto University;
Unit of Synergetic Studies for Space, Kyoto University, Kyoto, Japan, [email protected]
Author #4: Akito Davis Kawamura, Kwasan Observatory, Kyoto University, Kyoto, Japan,
[email protected]
Author #5: Hiroko Miyahara, Musashino Art University, Tokyo, Japan, [email protected]
Author #6: Harufumi Tamazawa, Kwasan Observatory, Kyoto University, Kyoto, Japan,
[email protected]
Author #7: Hiroaki Isobe, Unit of Synergetic Studies for Space, Kyoto University; Graduate School
of
Advanced
Integrated
Studies
for
Human
Survivability,
Kyoto
University,
Japan,
[email protected]
ABSTRACT
The Astronomical Diaries from Babylonia (ADB) are an excellent source of information of natural
phenomena, including astronomical ones, in pre-Christ era because it contains the record of highly
continuous and systematic observations. In this article we present results of a survey of aurora-like
phenomena in ADB, spanning from BCE 652 to BCE 61. We have found 9 records of aurora-like
phenomena. Philological and scientific examinations suggest 5 of them can be considered as likely
candidate for aurora observations. They provide unique information about the solar and aurora
activities in the first millennium BCE.
Keywords: history of astronomy, surveys, solar flares, CMEs, solar activity, astronomical diaries
from Babylonia
1
1. INTRODUCTION
The solar activity has been monitored by telescopic observations of sunspots for more than 400 years
(Zolotova & Ponyavin 2015; Vaquero & Vázquez 2009; Owens 2013). Reconstructing the earlier
solar activity has been of great interest from the viewpoints of the long-term variation of solar
magnetism and its effect on the Earth climate (Haigh 2007; Miyahara 2008; Hathaway 2010;
Usoskin 2013b). One common way to reconstruct the past solar activity is the analysis of
cosmogenic radioisotopes such as carbon-14 content in tree rings and beryllium-10 in ice cores
(Steinhilber et al. 2009).
Records in historical documents provide another way to investigate the solar activity in the
pre-telescopic era (Willis et al. 1996; Vaquero & Vázquez 2009; Usoskin et al. 2007; Usoskin 2013b;
Hayakawa et al. 2016b; 2016c, submitted). Eddy (1977b, 1980) and Vaquero & Vázquez (2009)
even claim that historical documents can offer us data with more precise date than radioactive
isotopes.
Chinese official histories (Yau et al. 1988; Yau et al. 1995; Xu et al. 2000; Hayakawa et al. 2015;
Kawamura et al. 2016; Hayakawa et al. 2016d, submitted) and Korean official histories (Lee et al.
2004) are especially suitable source documents for the purpose of studying the long-term variation
because these sources provide well-formatted records based on continuous observations by
professional astronomers (Keimatsu 1976; Hayakawa et al. 2015).
Recently, the past solar activity is also attracting the interest from the viewpoint of extreme space
weather (e.g., Tsurutani et al. 2003; Schrijver et al. 2012) particularly after the discoveries of
“superflares” in solar-type stars (Maehara et al. 2012; Shibayama et al. 2013; Maehara at al. 2015) as
well as the sharp increase of cosmogenic radioisotopes in tree rings around CE775 and CE994
(Miyake et al. 2012; 2013; Mekhaldi et al. 2015), for which one of possible causes are suggested to
be large solar flares. The discoveries of “superflares” in solar-type stars posed the question whether
such extremely intense solar flares and space weather events can occur in our Sun (e.g., Shibata et al.
2013; Aulanier et al. 2013).
The most intense solar flare throughout the history of telescopic observation is believed to be
so-called Carrington event (Carrington 1859; Tsurutani et al. 2003; Cliver & Dietrich 2013). It was
associated with worldwide aurora observations by amateur observers, even at low geomagnetic
latitudes (Loomis 1859-65; Kimball 1960; Nakazawa et al. 2005; Green & Boardsen 2006;
Hayakawa et al. 2016b). A sharp spike of nitrate in polar ice cores has also been found associated
with this event (McCracken et al. 2001), although the usage of nitrate as an index of solar flares is
debated (Wolff et al. 2012). Searches for the historical records corresponding to the cosmic ray event
2
in CE775 and CE994 (Miyake et al. 2012; 2013) have been carried out by several groups (Usoskin et
al. 2013a; Chapman et al. 2015; Stephenson 2015; Hayakawa et al. 2016a; Hayakawa et al. 2016e,
submitted).
From the viewpoint of the history of science, it is also interesting to investigate how far back we
can trace the solar and space weather events using historical records. Previously, the oldest record
was thought to be a Chinese record from BCE 193 (Yau et al. 1995). However, Stephenson & Willis
(2002) as well as Stephenson et al. (2004) found a much earlier record from BCE 567 within the
Astronomical Diaries from Babylonia (ADB) to be the oldest observation of aurora in the world and
the sole aurora observation in ADB.
In this article, we made further careful examinations of ADB in order to search for the potential
records of an aurora and hence to obtain insights into the aurora observations and records in
pre-Christ era that were not previously well known due to the shortage of historical documents.
2. Astronomical Diaries from Babylonia
ADB is a series of Akkadian cuneiform texts inscribed on clay tablets. Most of the tablets were
rediscovered in excavations at the site of Babylon in the late 19th century and now preserved in the
British Museum, London. Contemporarily, each text of these tablets was titled “regular observation
(naṣāru (EN.NUN) šá gi-né-e).” These records were mostly written and compiled by the families of
astronomer-astrologers (ṭupšar Enūma Anu Enlil) sponsored by the assembly of Esangil, the temple
of god Marduk in Babylon (N 32°33′, E 44°26′) (Mitsuma 2012; Mitsuma 2015). The scholars
compiled the diaries from generation to generation, at least from the mid-seventh to the mid-first
centuries BC. Toward the mid-third century BC, they fixed the format of the diaries, especially of
the so-called "Longer Diaries" or "Standard Diaries."
Each tablet of the standard diaries covers half a year, i.e. six months or seven months if an
intercalary month is included, or a third of a year, i.e. four months or five months including an
intercalary month. Horizontal rulings divide each tablet into four, five, six or seven sections,
according to its coverage. Each section covers a month, and its entries are arranged into subjects in
the following order; daily report of the sky, price list of commodities, summary of the positions of
the visible planets, level of the Euphrates, and unusual historical event(s).
In this article we mainly examine the daily sky reports of ADB. They use consistent terminology
and have a consistent set of criteria for the choice of what should be recorded. Their observations
were carried out continuously as the original title of the diary tablet suggests. The
astronomer-astrologers inserted a passage “I did not watch (NU PAP)”, when they could not make
3
their observations (Sachs & Hunger 1988; Mitsuma 2009).
Importantly, we have only fragments of the original ADB series, so our analysis is limited.
Although the earliest known tablet in the ADB dates from BCE 652 and the latest up to BCE 61, we
have not unearthed or reconstructed all tablets for every month. We have at most 5-10 % of the
estimated original complete ADB series (Stephenson et al. 2004; see also Sachs 1974). Future
reconstruction and deciphering of undated clay tablets could improve this situation at least partially.
3. METHOD
3.1. Target keywords and text survey
Within the ADB, we surveyed records that include descriptions of uncategorized luminous
phenomena in the sky, excluding the keywords whose meanings are well known, such as “fall of fire,
lightning strike (miqitti išāti)”, “lightning (birqu)”, “thunder (rigim Adad)”, “meteor (kakkabu rabû)”,
“comet (ṣallammû)”, “halo (TÙR/tarbaṣu)”, or normal “rainbow (TIR.AN / manzât)” shown in the
introduction of Sachs & Hunger (1988).
We first surveyed the critical editions of ADB published by Sachs & Hunger (1988, 1989, 1996)
and by Hunger & van der Spek (2006). They edited the transliterations of Akkadian texts from all
the ADB tablets whose dates became clear by 2006. We then examined the colour photos recently
taken by one of the authors (Y Mitsuma) at the British Museum, and copies made by EF Weidner
and TG Pinches.
3.2. Date conversion
The Babylonian calendar was a lunisolar calendar. One year consists of 12 lunar months (arḫu) or 13
lunar months including an intercalary month. Each day starts at sunset, as is the case in the Bible
(Parker & Dubberstein 1956, 26; Sachs & Hunger 1988, 15), each month starts when a new crescent
moon is observed, and each year starts at the month around the vernal equinox. The Julian dates of
the beginnings of Babylonian months covered by the diaries were calculated by Parker &
Dubberstein (1956) and by Sachs & Hunger (1988, 1989, 1996), except for those in BCE651, the
oldest diary known to us. Note that these conversion tables only cover up to BCE626. We follow the
procedure by Sachs & Hunger to convert Babylonian dates in this article. Based on the converted
dates, we computed normalized lunar ages according to the algorithm of Kawamura et al. (2016) that
employs the interactive data language (IDL) programs in the astronomy user IDL library of
NASA/Goddard Space Flight Center (Landsman 1993) and our program developed for numerically
determining the minimum of lunar luminosity.
4
4. Result
In total, we found nine candidates of aurora observations recorded in the ADB. Those we found are
shown with their ID numbers, keywords, references, dates in Julian calendar, normalized lunar ages,
dates in Babylonian calendar, transliterations of Akkadian texts, and English translations. The
notation "-n" such as -651 in every entry is the text number of the diaries published by Sachs &
Hunger (1988, 1989, 1996) and Hunger & van der Spek (2006). In the section of Babylonian date,
“n/n-1 BC” is used to show the Julian equivalent to a Babylonian year. Babylonian months are
shown with roman numerals. For the convention used to indicate a part of a diary, see Sachs &
Hunger (1988, 36–38).
#1: manzât / (very red) rainbow
Reference: -651 (BM 32312) Col. iv 20': The text was checked using a recently taken photo of the
tablet (Copy: Figure 1).
Date in Julian Calendar: ?? ?? BCE 651
Normalized lunar age: n/a
Date in Babylonian Calendar: BCE 652/651. XII. 28
Transliteration: 28 ŠÈG i ina KIN.SIG TIR ma-diš SA5 ina KUR GIB
Translation: The 28th, a little rain. In the afternoon, a very red rainbow stretched in the east.
#2: akukūtu / red glow
Reference: -567 (VAT 4956) 'Rev. 10': The text was checked using the copy of the tablet made by
EF Weidner, attached as Plate 17 to van der Waerden (1952–1953).
Date in Julian Calendar: 12/13 March BCE 567
Normalized lunar age: 0.003
Date in Babylonian Calendar: BCE 568/567. XI. 29
Transliteration: GE6 29 a-ku6-ku6-{ku6}-tu4 ina ŠÚ KUR 2 DA[NNA ....]
Translation: Night of the 29th, red glow flared up in the west; 2 double[-hour ....]
#3: manzât / rainbow (before sunrise)
Reference: -384 (BM 34634) 'Obv. 4': The text was checked using a recently taken photo of the
tablet (Copy: Figure 2).
Date in Julian Calendar: 8/9 or 9/10 December BCE 385
5
Normalized lunar age: 0.260 or 0.294
Date in Babylonian Calendar: BCE 385/384. IX. 8 or 9
Transliteration: [....] la-am KUR-ḫa TIR.AN Á SI u MAR ˹GIB˺ [....]
Translation: [....] before (sun)rise, a rainbow stretched in the northwest direction [....]
#4: dipāru / torch
Reference: -165A (BM 32844) 'Rev.' 10'–11' (according to the reconstruction by Sachs & Hunger
1989, 489)
Date in Julian Calendar: 16/17 September BCE 166
Normalized lunar age: 0.142
Date in Babylonian Calendar: BCE 166/165. VI. 4
Transliteration: [4 ina še-rì] IZI.GAR TA ULÙ ana SI DIB-ma UD-DA-su [....]
Translation: [The 4th, in the morning,] a “torch” crossed (the sky) from the south to the north, and
its bright light [....]
#5: sūmu / redness
Reference: -144 (BM 34609 [+] 34788 + 77617 + 78958) 'Obv. 33'–34': The text was checked with
a recently taken photo of the tablet (Copy: Figure 3a, 3b).
Date in Julian Calendar: 21/22 September–19/20 October BCE 145
Normalized lunar age: n/a
Date in Babylonian Calendar: BCE 145/144. VII
Transliteration: ITI BI su-um i-ṣa [ina GI]Š.NIM u GIŠ.ŠÚ GAR.GAR-an
Translation: That month, a little redness was found repeatedly in the east and in the west.
#6: sūmu / redness
Reference: -143A (BM 34045) 'Flake' 21': The text was checked with the copy of TG Pinches,
published by Sachs & Hunger (1996, Plate 190).
Date in Julian Calendar: 12/13 July-10/11 August BCE 144
Normalized lunar age: n/a
Date in Babylonian Calendar: BCE 144/143. IV
Transliteration: ITI BI su-um [ina] GIŠ.NIM u GIŠ.ŠÚ GAR.GAR-an
Translation: That month, redness was found repeatedly in the east and in the west.
6
#7: dipāru / torch
Reference: -136B (BM 45745) 'Obv.' 4'-5' (according to the reconstruction by Sachs & Hunger 1996,
182)
Date in Julian Calendar: 10/11 or 11/12 November BCE 137
Normalized lunar age: 0.710 or 0.743
Date in Babylonian Calendar: BCE 137/136. VIII. 20 or 21
Transliteration: ˹20˺ [.... GE6 21? ….] ˹GIM˺ IZI.GAR SAR-uḫ UD.DA-[su] ˹x˺ GAL IGI-LÁ-át
Translation: The 20th, [.... Night of the 21st (?) ….] flared up like a torch, [its] bright light was
seen.
#8: manzât / (red) rainbow
Reference: -122A (BM 45998 + 46049) 'Obv.' 11' (according to the reconstruction by Sachs &
Hunger 1996, 290)
Date in Julian Calendar: 28/29 or 29/30 April BCE 123
Normalized lunar age: 0.210 or 0.244
Date in Babylonian Calendar: BCE 123/122. II. 6/7
Transliteration: [x x] ˹ù?˺ ŠÚ šá sin dTIR.AN.NA šá MÚŠmeš-šú SUD TA SI ana Á ULÙ [GIB ....]
Translation: [....] and (?) setting of the moon, a rainbow whose shine was red [stretched] from the
north to the south side [....]
#9: dipāru / torch
Reference: -118A (BM 41693) 'Rev. 10': The text was checked using the copy of TG Pinches,
published by Sachs & Hunger (1996, Plates 249–251)
Date in Julian Calendar: 24/25 October BCE 119
Normalized lunar age: 0.754
Date in Babylonian Calendar: BCE 119/118. VII. 22
Transliteration: [.... SAG] GE6 IZI.GAR TA KUR ana MAR SUR-ma SUR-šú ma-gal BABBAR
Translation: [.... beginning] of the night, a torch flashed from east to west, and its flash was very
white.
5. Discussion
In our survey of the ADB, we found nine records that can be considered as the candidates for aurora
7
observations. They can be categorized using the following keywords: unusual “rainbow
(TIR.AN/manzât)” (#1, 3, 8), “red glow (akukūtu)” (#2), “redness (sūmu)” (#5, 6), and “torch
(IZI.GAR/dipāru)” (#4, 7, 9).
5.1. Red glow: akukūtu
The record #2 is the well-known record from Stephenson et al. (2004), where the term was
introduced and examined philologically and scientifically. The term akukūtu means “flame, blaze” or
“red glow in the sky (as a rare meteorological phenomenon)” (CAD: I-1, p285). It is the second
meaning that appears in this sentence. CAD (The Assyrian Dictionary of the Oriental Institute of the
University of Chicago) relates this term to aurora as well.
Stephenson et al. (2004) made a positive interpretation of #2 because its last signs - 2 DANNA “2 double hours” indicate the duration of the phenomenon and there is no other light source that can
supply red light for as long as 4 hours. Their conclusion can be reinforced with the flat topography in
Babylonia. Babylon is located in the alluvial plain caused by the rivers of Euphrates and Tigris, in an
area with no mountains until the Zagros Mountains about 180 km away in the northeast. Its weather
is very dry, allowing few trees to grow. This means there is nowhere that a mountain fire or
long-lasting light can be caused on the ground.
5.2. Unusual rainbow: TIR.AN (manzât)
(d)TIR.AN(.NA)
(manzât) of #3, and #8 usually means as “rainbow” or “a name of star” or
sometimes as “halo” with a subsequent description such as “surrounding the sun/moon” (CAD, X-1,
pp230-232). #1 shows TIR. It seems to be an abbreviated form of TIR.AN and is followed by the
words ma-diš SA5 “very red,” as is suggested by the comment of Sachs & Hunger (1988, p46) to #1.
manzât was used with the verb GIB (parāku) “stretch” in #1 and #3, and the same verb may be
restored in #8. These “rainbows” appear “stretched” in the sky with a red colour (#1, #8), or at night
(#3, #8). Since these appearances do not match the nature of normal rainbows, manzât in #1, #3, and
#8 seem to have been something different.
The unusual “rainbow” or TIR.AN in #3 was observed “before sunrise.” The lunar age of this
event is about 0.3 with the moon at about the waxing quarter, and the moon had already set at this
time “before sunrise.” Therefore, moonbow or any other moon-related atmospheric optical
phenomenon cannot explain this event. Considering that this event was seen in the northern direction,
which is usual for low-latitude auroras, it is reasonable to leave this record as the candidate for an
8
aurora observation.
The term dTIR.AN.NA (manzât) in #8 is recorded after the “setting of the moon”. The exact
observational date is broken in the original tablet. However, this record is located between the record
for BCE 123/122. II. 5 and that for BCE 123/122. II. 8 and thus can be located on II. 6/7, namely on
28/29 or 29/30 April BCE 123. Its moon phase is 0.227 or 0.261 and thus the moon was
approximately in its waxing quarter. This means “after moonset” was equivalent to just after
midnight. This red “rainbow” may be regarded as an auroral arc elongated “from north to south”
across the sky.
The unusual “rainbow” or TIR in #1 was also red in colour. Unfortunately the Julian date of this
record (BCE 652/651. XII. 28) was not calculated by Sachs & Hunger (1988) nor by Parker &
Dubberstein (1956). Despite its abnormality, this record is very unlikely to represent aurora due to
the observation time being “in the afternoon (KIN.SIG)”. Red rainbows can be observed especially
at the time of twilight when red-coloured light from the sun gets refracted by waterdrops. The “rain”
immediately before this phenomenon might have supplied the water-drops to cause rainbows in the
quite dry weather in Babylonia.
Nevertheless we should note two historical reports for luminescence phenomena observed in the
day time in a huge magnetic storm, namely in the Carrington event. Loomis (1860b) cited a letter
from Lieut. N. Home to describe aurora observation at Halifax on 28 August 1859. At 17:00, “a long
narrow belt of cloud from E. to W. having a peculiar orange-white appearance” was seen, and at
20:00 “this cloud suddenly became luminous at its eastern extremity”. This cloud is unlikely to have
been aurora in the day time, but we cannot rule out the possibility that it was aurora.
Meanwhile, “unusual rainbow” can sometimes be related to bow-shaped auroras worldwide. A
Norwegian drawing for aurora on 26 November 1710 was drawn like a rainbow in Ramus (1745)
and Chinese historians reported some auroras as “white/unusual rainbow” in their official histories
as highlighted by Hayakawa et al. (2016a).
5.3. Redness: sūmu
The term sūmu used in #5 and #6 means “redness, red glow” or “red spot”. While the term in the
latter meaning is used for red spots on the body, the term in the former meaning is used in
astronomical contexts (CAD: XV, pp381–383). The sūmu of #5 and #6 were probably celestial
events, although they appear not in reports of celestial events but in reports of historical events.
Those observations of “redness” might have been considered as omens for historical events and
recorded with them. Another celestial event, for example, lightning strike (miqitti išāti), is often
9
inserted into the historical parts of the diaries and seems to have an ominous significance (Pirngruber
2013).
These terms of “redness” are used almost in the same expression with the signs GAR.GAR-an,
which represents the Akkadian verb ittaškan, Ntn, i.e. passive habitative-iterative (Caplice & Snell
2002: pp.51-52), preterite of šakānu “to place.” This indicates that the “redness” of #5 and #6
appeared repeatedly.
These philological analyses show us that “redness” appeared repeatedly in the same month in
both cases. This phrase may describe low-latitude auroras whose movement is quite slow and which
thus seem to remain in the same place for a long time. During the Halloween storm (October 29-31,
2003), aurora observations were made for 3 successive nights (Shiokawa et al., 2005). Alternatively,
this phrase is likely to describe a stable red auroral (SAR) arc that can be seen as red, faint lights.
Data from optical imaging on board Dynamics Explorer 1 show a SAR arc lasting for 28 hours
(Craven et al., 1982). In fact, auroras can appear repeatedly for several days when complex active
regions on the sun continue to launch multiple coronal mass ejections. At the Carrington event, the
strong magnetic storms brought a cluster of auroras to the earth from 1859/08/28 to 09/04 (Loomis
1859-65; Kimball 1960; Green & Boardsen 2005; Hayakawa et al. 2016b). In September 1770, a
series of aurora observation were made in East Asia for at least three days straight (Willis et al.
1996; Kawamura et al. 2016). These records (both #5 & #6) suggest the possibility of strong solar
activity in BCE 145-144. In summary, although it is slightly mysterious that they appeared in the
east and west, these records are not contradictory with aurora records.
5.4. Torches: IZI.GAR (dipāru)
This term “IZI.GAR (dipāru)” from records #4, #7, and #9 means “torch” (CAD: III, pp156–157).
The phrase “ḫakukūtu, which is like dipāru” appears once in a divination text (Virolleaud 1911–
1912, no.107:3).
Record #4 involves a verb “DIB (etēqu)”. This is a motion verb meaning “to pass/go along”
(CAD: IV, p384; Sachs & Hunger 1988, p30). This means that the “torch” in #4 moved from south
to north and is probably a meteor or a fireball. If we interpret this record as aurora, we could relate
this with expansion and contraction of the aurora oval.
Phenomenon of record #9 has an extension from east to west. The problem is to identify if this is
with motion. Its verb “SUR (ṣarāḫu)” means “to light up,” “to flare up,” or “to display a sudden
luminosity” (CAD: XVI, p100). This verb itself does not provide an answer to our question whether
this recorded phenomenon appeared without motion. There is a possibility that this is aurora. Bright
10
aurora looks white or greenish white because it consists of emissions from O (green colour) and
from N2 and N2+ (red and blue colours). After auroral breakups, bright aurora expands toward the
north and west. The leading edge of the bright aurora is called a westward traveling surge. The
westward traveling surge moves westward, but it is unclear if such an elongated structure is
expressed as a torch. Thus, this reminds us of a fireball.
As for record #7, its subject is lost. This makes any detailed discussion difficult. However,
something like “a torch” appeared with “UD.DA (ṣētu, bright light).” The word ṣētu frequently
refers the light of the sun or the moon (CAD: XVI, pp150-153). Therefore, strong brightness, at least,
seems to be associated with this recorded phenomenon. According to the date written in the clay
tablet, its date is 10/11 or 11/12 November BCE 137. In case if it is observed at daytime, we can
hardly regard this event as aurora. In case if it is observed at night on 11/12, we have still a little
possibility to regard this event as aurora. We have examples for low-latitude aurora, which becomes
partially brighter (Shiokawa et al. 2005). Thus, we cannot exclude the possibility of aurora for this
record.
5.5. Likeliness of every record
Based on the analysis above, we can rate these aurora-like records as follows (Table 1). #2 has no
reason not to be related with aurora as Stephenson et al. (2004) stated. The same can be stated for the
“redness” in #5 and #6. They appeared repeatedly and remind us of clustering aurora caused by huge
geomagnetic storms like those at the Carrington event. The unusual “rainbows” in #3 and #8 are not
unlike aurora, since these rainbows are observed at night. Despite the same terminology, #1 is
unlikely to be aurora due to its daytime observation. #4 and #9 seem like fireballs or meteors from
the descriptions and we do not have any positive intention to relate them with aurora. #7 could be
aurora as the term dipāru can be used for description of ḫakukūtu, a variant of akukūtu, which can
mean aurora, though its subject is lost and we cannot make a clear conclusion on this.
Korte & Stolze (2012) estimated the location of the aurora zone for past 10,000 years. During the
period spanning from BCE 652 to BCE 61, Babylon was situated near the center of the two
boundaries where aurora was visible on the horizon at the geomagnetic activity levels Kp=4 and
Kp=9. According to the statistical study by Remick & Love (2006), the mean wait times between
successive events are 7.12, 16.55, 42.22, and 121.40 days for Kp ≥ 5, 6, 7, and 8, respectively. Thus,
it is quite likely that aurora was frequently visible at Babylon somewhere between the horizon and
zenith.
11
5.6. Comparison with long-term solar activity
In order to map the aurora-like records shown above with long-term solar activity, we compared the
dates of these records with proxy-based solar activity levels. Figure 4 shows a comparison of the
aurora-like records with the solar activity level anomaly reconstructed using multiple proxies of
radioactive isotopes by Steinhilber et al. (2009) at a resolution of 20-30 years. However, it should
also be noted that this comparison between characteristics of the solar activity at different
time-scales is hard and complex, as on one hand auroras occur at daily scale and on the other hand
the reconstruction of solar activity by Steinhilber et al. (2009) has a decadal time-resolution. (see
Vaquero et al. (2002) for the similar problems in case of naked-eye observations of sunspots).
This figure shows us that most of the aurora-like records, except for #3 in BC 385 in Solar
Minimum (Eddy 1977a, b; Usoskin et al. 2007; Nagaya et al. 2012), are located in phases of high
solar activity. The cases #5-#7 are clustered in BCE 140s-130s and #8-#9 are around BCE 120.
These peaks are comparable with contemporary aurora records from other regions. For the former
peak, red vapour was recorded in BCE 139 in Chinese official history Hànshū (Yau et al. 1995), and
reports of sky fire in BCE 147 and night sun in BCE 134 in western classics (Stothers 1979). For the
latter peak, we have reports of milk rain in BCE 124 and BCE 118 in western classics (Stothers
1979). Although we do not have exact simultaneous observation of aurora, these clustering records
support the peaks at both BCE 140s-130s and around BCE 120 shown in the ADB.
6. Conclusion
We surveyed aurora-like records in ADB spanning from BCE 652 to BCE 61. We found 9 records of
aurora-like phenomena including one mentioned in Stephenson et al. (2004) and examined them to
evaluate 5 likely, 3 unlikely and 1 possible aurora event. The main characteristics of these events are
provided in this article. Our result is quite consistent with the long-term solar activity level, although
comparison between characteristics of the solar activity at different time-scales has difficulties as
stated above. This article rewrites the history of aurora observation in this early period with dates to
provide clear insights for the era before Christ. This article also examines proxies at a high
resolution in this early period in order to consider long-term solar activity and rare extreme space
weather events. A lot of unpublished clay tablets of the ADB are preserved in the British Museum.
Although most of them are fragmentary, study of those tablets will provide us further astronomical
information from the mid-seventh to the mid-first centuries BCE, possibly including further records
of aurora-like phenomena.
12
Abbreviations
BM: Tablets in the collections of the British Museum
VAT: Tablets in the collections of the Staatliche Museen, Berlin
Competing interests
There are no competing interests.
Authors’ contributions
This research was performed with the cooperation of authors as follows: HH and YM made
historical and philological contributions. ADK, YE, and HT made contributions on scientific
interpretations and analyses. HM compared and discussed records with long-term solar activity. HI
supervised this study. All authors read and approved the final manuscript.
Acknowledgement
We thank the Trustees of the British Museum for allowing the study and photography of the tablets
BM 32312, BM 34609 (+) 34788 + 77617 + 78958, and BM 34634.
We acknowledge support from the Center for the Promotion of Integrated Sciences (CPIS) of
SOKENDAI as well as Kyoto University’s Supporting Program for Interaction-based Initiative Team
Studies “Integrated study on human in space” (PI: H. Isobe), the Interdisciplinary Research Idea
contest 2014 by the Center of Promotion Interdisciplinary Education and Research, the
“UCHUGAKU” project of the Unit of Synergetic Studies for Space, and the Exploratory Research
Projects of the Research Institute of Sustainable Humanosphere, Kyoto University. This work was
also supported by Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and
Technology of Japan, Grant Numbers 15H05816 (PI: S. Yoden), 26870111 (PI: Y. Mitsuma), and
15H05815 (PI: Y. Miyoshi).
Reference
Aulanier G, Démoulin P, Schrijver CJ, Janvier M, Pariat E, Schmieder B (2013) The standard flare
model in three dimensions. II. Upper limit on solar flare energy. A&A, 549, 7.
Doi:10.1051/0004-6361/201220406
CAD: Oppenheim AL, Reiner E, et al. eds., (1956–2010) The Assyrian Dictionary of the Oriental
Institute of the University of Chicago, 21 Vols., Chicago.
13
Caplice R & Snell D (2002) Introduction to Akkadian, Rome.
Carrington RC (1859) Description of a Singular Appearance seen in the Sun on September 1, 1859.
MNRAS, 20, 13, Doi: 10.1093/mnras/20.1.13
Chapman J, Neuhäuser DI, Neuhäuser R, Csikszentmihalyi M (2015) A review of East Asian reports
of aurorae and comets circa AD 775. Astron. Nachr., 88: pp789-804.
Doi:10.1002/asna.201512193
Cliver EW & Dietrich WF: The 1859 space weather event revisited: limits of extreme activity. J.
Space Weather Space Clim., 2013, 3, A31. Doi: 10.1051/swsc/2013053
Craven, J. D., Frank, L. A. and Ackerson, K. L. (1982), Global observations of a SAR arc. GRL, 9:
961–964. Doi:10.1029/GL009i009p00961
Eddy JA (1977a) The case of the missing sunspots. Scientidic American, 236: 80-88.
Doi:10.1038/scientificamerican0577-80
Eddy JA (1977b) Climate and the changing sun. Climatic Change, 1: 173-190.
Eddy JA (1980) The historical record of solar activity. In: The ancient sun: Fossil record in the earth,
moon and meteorites; Proceedings of the Conference, Boulder, CO, October 16-19, 1979.
(A81-48801 24-91). Pergamon Press, New York and Oxford, pp 119–134.
Green J, Boardsen S, Odenwald S, Humble J, Pazamickas K (2006a). Eyewitness reports of the great
auroral storm of 1859. Advances in Space Research 38 (2): 145–154. Doi:
10.1016/j.asr.2005.12.021
Green J, Boardsen S (2006b) Duration and extent of the great auroral storm of 1859. Advances in
Space Research 38 (2): 130–135. Doi: 10.1016/j.asr.2005.08.054
Haigh JD (2007) The Sun and the Earth’s Climate. Living Rev. Solar Phys. 4, 2.
Doi:10.12942/lrsp-2007-2
Hathaway DH (2010) The Solar Cycle, Living Rev. Solar Phys. 7, 1. Doi: 10.12942/lrsp-2010-1
Hayakawa H, Tamazawa H, Kawamura AD, Isobe H (2015) Records of sunspot and aurora during
CE 960–1279 in the Chinese chronicle of the Sòng dynasty. EPS, 67:82.
Doi:10.1186/s40623-015-0250-y
Hayakawa H, Isobe H, Kawamura AD, Tamazawa H, Miyahara H, Kataoka R (2016a) Unusual
rainbow and white rainbow: A new auroral candidate in oriental historical sources. PASJ, 68
(3): 33. Doi:10.1093/pasj/psw032
Hayakawa H, Iwahashi K, Tamazawa H, Isobe H, Kataoka R, Ebihara Y, Miyahara H, Kawamura
AD, Shibata K (2016b) East Asian Observations of Low Latitude Aurora during the
Carrington Magnetic Storm. PASJ, first published online. Doi:10.1093/pasj/psw097
14
Hayakawa H, Mitsuma Y, Fujiwara Y, Kawamura AD, Kataoka R, Ebihara Y, Kosaka S, Iwahashi K,
Tamazawa H, Isobe H (2016c) The earliest drawings of datable auroras and a two-tail comet
from the Syriac Chronicle of Zūqnīn. PASJ, accepted. (arxiv:1610.08690)
Hayakawa H, Tamazawa H, Ebihara Y, Miyahara H, Kawamura AD, Aoyama T, Isobe H (2016d)
Records of sunspots and aurora candidates in the Chinese Official Histories of the Yuán and
Míng dynasties. PASJ, submitted.
Hayakawa H, Tamazawa H, Uchuyama Y, Ebihara Y, Miyahara H, Kosaka S, Iwahashi K, Isobe H
(2016e) Historical aurora evidences for great magnetic storms in 990s. Sol. Phys., submitted.
Hunger H, van der Spek RJ (2006) An Astronomical Diary Concerning Artaxerxes II (Year 42 =
363-2 BC): Military Operations in Babylonia. Arta, no. 002, 1–16.
Kawaura AD, Hayakawa H, Tamazawa H, Miyahara H, Isobe H (2016), “Aurora Candidates from
the Chronicle of Qīng Dynasty in Several Degrees of Relevance”, PASJ, 68 (5): 79. Doi:
10.1093/pasj/psw074
Kimball DS (1960) A study of the aurora of 1859. Scientific Report No. 6, University of Alaska, No.
6.
Korte M, Stolze, S (2014) Variations in mid-latitude auroral activity during the Holocene.
Archaeometry, 58, 159-176. doi: 10.1111/arcm.12152
Landsman WB (1993) The IDL astronomy user’s library, astronomical data analysis software and
systems II, A.S.P. Conference Series, 52: 246.
Lee E, Ahn Y, Yang H, Chen K (2004) The sunspot and auroral activity cycle derived from Korean
historical
records
of
the
11th-18th
century.
Sol
Phys
224:
373–386.
Doi:10.1007/s11207-005-5199-8.
Link F (1962) Obsevations et catalogue des auroras borealis apparentes en occident de–626 a 1600.
Geol Sb 10:297–392, Doi:10.1016/0083-6656(67)90037-2
Loomis E (1859) The Great Auroral Exhibition of August 28th to September 4th, 1859 (1st Article.).
Am. J. Sci., Second Series, 29, 84: pp385-408.
Loomis E (1860a) The Great Auroral Exhibition of August 28th to September 4th, 1859 (2d Article.).
Am. J. Sci., Second Series, 29, 85: pp92-97.
Loomis E (1860b) The Great Auroral Exhibition of August 28th to September 4th, 1859 (3d Article.).
Am. J. Sci., Second Series, 29, 86: pp249-265.
Loomis E (1860c) The Great Auroral Exhibition of August 28th to September 4th, 1859 (4th Article.).
Am. J. Sci., Second Series, 29, 87: pp386-397.
Loomis E (1860d) The Great Auroral Exhibition of August 28th to September 4th, 1859 (5th Article.).
15
Am. J. Sci., Second Series, 30, 88: pp79-94.
Loomis E (1860e) The Great Auroral Exhibition of August 28th to September 4th, 1859 (6th Article.).
Am. J. Sci., Second Series, 30, 90: pp339-361.
Loomis E (1861a) The Great Auroral Exhibition of August 28th to September 4th, 1859 (7th Article.).
Am. J. Sci., Second Series, 32, 94: pp71-84.
Loomis E (1861b) The Great Auroral Exhibition of August 28th to September 4th, 1859 (8th Article.).
Am. J. Sci., Second Series, 32, 96: pp318-331.
Loomis E (1865) The aurora borealis, or polar light; its phenomena and laws. Annual Repor of the
Smithsonian Institute: pp208-248.
Maehara H, Shibayama T, Notsu S, Notsu Y, Nagao T, Kusaba S, Honda S, Nogami D, Shibata K
(2012) Superflares on solar-type stars. Nature 485:478–481. Doi:10.1038/nature11063
McCracken KG, Dreschhoff GAM, Zeller EJ, Smart DF, Shea MA (2001) Solar cosmic ray events
for the period 1561–1994: 1. Identification in polar ice, 1561–1950. JGR, 106, A10:
21,585-21,598. Doi:10.1029/2000JA000237
Mekhaldi F, Muscheler R, Adolphi F, Beer AAJ, McConnell JR, Possnert G, Sigl M, Svensson A,
Synal H-A, Welten KC, Woodruff TE (2015) Multiradionuclide evidence for the solar origin
of the cosmic-ray events of ᴀᴅ 774/5 and 993/4. Nature Communications, 6:8611.
Doi:10.1038/ncomms9611
Mitsuma Y (2009) Royal Officials and the City of Babylon in the Seleucid and Arsacid Periods: A
Study of “Diaries”. Tokyo (Doctor Thesis)
Mitsuma Y (2012) Astrology and Astronomy in the Babylonian Astronomical Diaries. In: Tsuruoka Y,
Fukasawa H, eds., Spirituality and the History of Religion, vol. 2, Tokyo, 35–51 (in
Japanese).
Mitsuma Y (2015) From Preliminary Diaries to Short Diaries: The First and the Second Steps in the
Compilation Process of the Late Babylonian Astronomical Diaries, SCIAMVS 16: 53–73.
Miyahara, H. Yokoyama, Y., Masuda, K. (2008), Possible link between multi-decadal climate cycles
and periodic reversals of solar magnetic field polarity. Earth and Planetary Science Letters
272: 290-295. Doi:10.1016/j.epsl.2008.04.050
Miyake F, Nagaya K, Masuda K, Nakamura T (2012) A signature of cosmic-ray increase in AD 774–
775 from tree rings in Japan. Nature: pp240–242. Doi:10.1038/nature11123
Miyake F, Masuda K, Nakamura T (2013) Another rapid event in the carbon-14 content of tree rings.
Nat Commun, 4, 1748. Doi:10.1038/ncomms2783
Nagaya K, Kitazawa K, Miyake F, Masuda K, Muraki Y, Nakamura T, Miyahara H, Matsuzaki H
16
(2012) “Variation of the Schwabe Cycle Length During the Grand Solar Minimum in the 4th
Century BC Deduced from Radiocarbon Content in Tree Rings,” Solar Phys 280: 223-236.
Doi:10.1007/s11207-012-0045-2
Nakazawa Y, Okada T, Shiokawa K (2004) Understanding the "SEKKI" phenomena in Japanese
historical literatures based on the modern science of low-latitude aurora. EPS, 56: e41-e44.
Doi:10.1186/BF03353323
Owens B (2013) Slow Science. Nature, 495 (7441): 300-3. doi: 10.1038/495300a.
Parker RA, Dubberstein WH (1956) Babylonian chronology: 626 B.C.-A.D. 75, Providence.
Pirngruber R (2013) The Historical Sections of the Astronomical Diaries in Context: Developments
in a Late Babylonian Scientific Text Corpus. Iraq, 75: 197–210.
Remick KJ, Love JJ (2006) Statistical modeling of storm-level Kp occurrences. GRL, 33, L16102,
doi:10.1029/2006GL026687.
Sachs AJ (1974) Babylonian observational astronomy. Philosophical Transactions of the Royal
Society of London, A.276: 43–50.
Sachs AJ, Hunger H (1988) Astronomical diaries and related texts from Babylonia, Vienna, I
Sachs AJ, Hunger H (1989) Astronomical diaries and related texts from Babylonia, Vienna, II
Sachs AJ, Hunger H (1996) Astronomical diaries and related texts from Babylonia, Vienna, III
Schrijver CJ, Beer J, Baltensperger U et al. (2012), JGR, 117, A08103. Doi: 10.1029/2012JA017706
Shibata K, Isobe H, Hillier A, Choudhuri AR, Maehara H, Ishii TT, Shibayama T, Notsu S, Notsu Y,
Nagao T, HondaS, Nogami D (2013) “Can superflares occur on our Sun?,” PASJ, 65 (3): 49.
Doi: 10.1093/pasj/65.3.49.
Shibayama, T, Maehara H, Notsu S, Notsu Y, Nagao T, Honda S, Ishii TT, Nogami D, Shibata K
(2013) Superflares on solar-type stars observed with Kepler. I. Statistical properties of
superflares. Astrophysical J Suppl 209: 5. Doi:10.1088/0067-0049/209/1/5.
Shiokawa K, Ogawa T, Kamide Y (2005), Low-latitude auroras observed in Japan: 1999–2004, J.
Geophys. Res., 110, A05202, Doi:10.1029/2004JA010706.
Steinhilber F, Beer J, Fröhlich C (2009) “Total solar irradiance during the Holocene,” GRL, 36. Doi:
10.1029/2009GL040142
Stephenson FR, & Willis DM (2002) The earliest datable observation of the aurora borealis. in:
Steele JM & Imhausen A (eds.). Under one sky: astronomy and mathematics in the ancient
Near East, Münster.
Stephenson FR, Willis DM, Hallinan TJ (2004) The earliest datable observation of the aurora
borealis. A&G 45 (6): 6.15-6.17, Doi: 10.1046/j.1468-4004.2003.45615.x
17
Stephenson FR (2015) Astronomical evidence relating to the observed 14C increases in A.D. 774–5
and 993–4 as determined from tree rings. Advances in Space Research, 55 (6): 1537–1545.
Doi: 10.1016/j.asr.2014.12.014
Stothers R (1979) Ancient aurorae. Isis 70 (1):85–95
Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S (2003) The extreme magnetic storm of 1-2
September 1859. JGR, 108, SSH 1-1, CiteID 1268. Doi: 10.1029/2002JA009504
Usoskin IG, Solanki SK, Kovaltsov GA (2007) Grand minima and maxima of solar activity: new
observational constraints. A&A, 471: 301-309. Doi: 10.1051/0004-6361:20077704
Usoskin IG, Kromer B, Ludlow F, Beer J, Friedrich M, Kovaltsov GA, Solanki SK, Wacker L
(2013a) The AD775 cosmic event revisited: the Sun is to blame. A&A, 552, L3, Doi:
10.1051/0004-6361/201321080
Usoskin IG (2013b) A History of Solar Activity over Millennia. Living Rev. Solar Phys. 10, 1. Doi:
10.12942/lrsp-2013-1
Vaquero JM, Gallego MC, García JA (2002) A 250-year cycle in naked-eye observations of sunspots,
GRL. 29 (20): 58.1–58.4. Doi: 10.1029/2002GL014782
Vaquero JM, Vázquez M (eds) (2009) The Sun recorded through history, Berlin.
Virolleaud, Ch (1911–1912) L’astrologie chaldéenne. 2nd Supplement, Paris.
Van der Waerden, BL (1952–1953) History of the Zodiac. Archiv für Orientforschung 16: 216–230.
Willis DM, Stephenson FR, Singh JR (1996) Auroral Observations on AD 1770 September 16: the
Earliest Known Conjugate Sightings. QJRAS, 25 (2): pp417-436.
Wolff EW, Bigler M, Curran MAJ, Dibb JE, Frey MM, Legrand M, McConnell JR (2012) The
Carrington event not observed in most ice core nitrate records. GRL, 39: L08503. Doi:
10.1029/2012GL051603
Xu Z, Pankanier DW, Jiang Y (2000) East asian archaeoastronomy: historical records of
astronomical observations of China, Japan and Korea, Amsterdam.
Yau KKC, Stephenson FR (1988) A revised catalogue of Far Eastern observations of sunspots (165
BC to AD 1918). QJRAS, 29:175–197
Yau KKC, Stephenson FR, Willis DM (1995) A catalogue of auroral observations from China, Korea
and Japan (193 BC–AD 1770)., Rutherford Appleton Laboratory, Chilton (UK), Dec 1995,
IV + 82 p., ISSN 1358-6254
Zolotova NV, Ponyavin DI (2015) The Maunder Minimum was not as grand as it seemed to be. ApJ,
800:42. Doi: 10.1088/0004-637X/800/1/42
18
Figures
Figure 1: A copy of #1, -651 Col. iv 20', by Yasuyuki Mitsuma
Figure 2: A copy of #3, -384 'Obv. 4', by Yasuyuki Mitsuma
Figure 3a (upper part): A copy of #5, -144 'Obv. 33' right side, by Yasuyuki Mitsuma
Figure 3b (lower part): A copy of #5, -144 'Obv. 34' left side, by Yasuyuki Mitsuma
19
Figure 4: Aurora-like records compared with total solar irradiance anomaly
Black Curve: Total solar irradiance anomaly from Steinhilber et al. (2009)
Black vertical lines: Likely aurora records from the ADB
Gray vertical lines: Unlikely aurora records from the ADB
Black dashed vertical lines: Possible aurora records from the ADB
ID
year (BCE)
month
date
keyword
direction
likeliness
??
manzât
E
unlikely
3 12/13
akukūtu
W
likely
manzât
NW
likely
dipāru
S to N
unlikely
#1
651 ??
#2
567
#3
385
#4
166
#5
145 9/10
sūmu
E and W
likely
#6
144 7/8
sūmu
E and W
likely
#7
137
11 10/11 or 11/12
dipāru
#8
123
4 28/29 or 29/30
manzât
N to S
likely
#9
119
dipāru
E to W
unlikely
12 8/9 or 9/10
9 16/17
10 24/25
possible
Table 1: Summary table for records of aurora-like phenomena in ADB
20