Download vectors

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
VECTORS
1. Define coplanar vectors.
Definition : Three or more vectors lie on the same plane are called as coplanar
vectors.
2. Define collinear vectors.
Definition : Two or more vectors are said to be collinear vectors, when they are along
the same lines or parallel lines.
If a and b are parallel vectors then a = kb. For any scalar ‘k’.
3. If a = 2 i + 3j – 5k,
( i ) Find the unit vector in the direction of the vector a
( ii ) Find the direction cosines of the vector a and hence prove that,
Cos2 α + Cos2 β + Cos 2γ= 1
Solution : consider, a = 2 i + 3j – 5k = ( 2 , 3 , - 5 )
| a | = √ ( 4 + 9 + 25 ) = √ 38 units
a
( i ) the unit vector in the direction of the vector a =
2 i + 3j – 5k
=
|a|
√ 38
( ii ) direction cosines of a are cosα = 2/√ 38 , Cosβ = 3/√ 38 & Cosγ = - 5 / √ 38
Consider,
Cos2 α + Cos2 β + Cos 2γ = 4/38 + 9/38 + 25/38 = 1
4. If the direction cosines of the vector are 1/5 , 3/5 & n , Find ‘n’.
Solution : It is given that,
cosα = 1/5 , Cosβ = 3/5 & Cosγ = n
since,
Cos2 α + Cos2 β + Cos 2γ = 1
1/25 + 9/25 + n² = 1
n² = 1 – 1/25 – 9 /25
n² = 15/25 = 3/5
n = ±√( 3/5)
5. Define dot product or scalar product of two vectors.
Solution; If a and b are any two vectors and θ be the angle between them, then dot
product of a and b is defined by
a • b = | a | | b |Cosθ
b
θ
a
6. Define cross product or vector product of any two vectors.
Solution; If a and b are any two vectors and θ be the angle between
Them & η unit vector perpendicular to both a & b , then,
a X b = | a | | b | η Sinθ
a
η
θ
b
7. If a = i – 2j + 2k & b = 2i + j – 3k , Find
(i) a•b
( ii ) cosine of the angle between the vectors a & b,
( iii ) projection of a in the direction of b
Solution ; consider,
a = i – 2j + 2k = ( 1 , -2 , 2 )
b = 2i + j – 3k = ( 2 , 1 - 3 )
(i) a•b =2–2–6=-6
( ii ) | a | = √ ( 1 + 4 + 4 ) = 3 units
| b | = √ ( 4 + 1 + 9 ) = √14 units
If θ be the angle between a & b then,
a•b
Cos θ =
-6
=
|a| |b|
-2
=
3√14
√14
( iii )
a • b
projection of a in the direction of b =
-6
=
|b|
√14
8. If | a | = 3 , | b | = 5 & | c | = 7 and a + b + c = 0 , find the angle between the vectors
a & b.
Solution:
since, a + b + c = 0 , let θ be the angle between the vectors a & b
a+b=- c
| a + b |² = | -c |²
| a |² + | b |² + 2 a • b = | c |²
9 + 25 + 2 | a || b | Cosθ = 49
9 + 25 + 2 ( 3 ) ( 5 ) Cosθ = 49
30 Cosθ = 49 - 34
30 Cosθ = 15
Cosθ = ½
θ = 60°
9. If a & b are unit vectors inclined at an angle of 60° to each other , find | a + b |.
Solution:
It is given that | a | = | b |.= 1 and
θ = 60°
Consider, | a + b |² = | a |² + | b |² + 2 a • b
= | a |² + | b |² + 2 | a | | b | Cosθ
= 1 + 1 + 2 (1) (1) cos60°
= 2 + 2( ½)
=2+1
=3
| a + b | = √ 3 units
10.If a & b are unit vectors inclined at an angle θ to each other , show that
│a – b │ = 2 Sin(θ/2)
Solution : Given that , │a │ = │ b │ = 1
consider ,
| a - b |² = | a |² + | b |² - 2 a • b
= | a |² + | b |² - 2 │a│ │ b │Cosθ
= 1 + 1 – 2 (1)(1) Cosθ
= 2 - 2 Cosθ
= 2( 1 – Cosθ )
= 2 { 2 Sin²(θ/2 )}
= 4 Sin²(θ/2)
Therefore │a – b │ = 2 Sin(θ/2)
11. If
a = 3 i – 2j + k &
(i)axb
b = i + 3j + k , Find
( ii ) | a x b | ( iii ) sinθ where θ is the angle between a & b
( iv ) unit vector perpendicular to both a & b.
Consider,
a = 3 i – 2j + k = ( 3 , - 2 , 1 )
b=i+3j+k =(1 ,3 ,1)
(I)axb =
i
j
k
3
-2
1
1
3
1
=i[-2–3]–j[3–1]+k[9+2]
= - 5 i – 2 j + 11 k
( ii ) | a x b | = √ ( 25 + 4 + 121 ) = √150 = 5√6 units.
( iii ) | a x b | = 5√6 units.,
| a | = √ ( 9 + 4 + 1 ) = √14 units
| b | = √ (1 + 9 + 1 ) = √11 units
|axb|
Sinθ
=
5√6
=
|a| |b|
√14 √11
(Iv)
Unit vector perpendicular to both a & b
axb
=
=
|a x b|
- 5 i – 2 j + 11 k
5√6
11. Find the area of the parallelogram whose adjecent sides are given by the vectors,
i + 2j + 3k
& - 3 i – 2 j + k.
solution : consider,
a = i + 2j + 3k = ( 1 , 2 , 3 )
b= -3i–2j+k=(-3 ,-2 ,1)
(I)axb =
i
j
k
1
2
3
-3
-2
1
=i[2+6]–j[1+9]+k[-2+6]
= 8 i - 10 j + 4 k
=2{4I–5j+2k}
| a x b | = 2 √ ( 16 + 25 + 4 ) = 2 √45 units.
Area of the parallelogram = | a x b |= 2 √45 square units.
12. Find the area of the parallelogram, whose diagonals are represented by the vectors
3 i + j + 2k & i – 3j + 4k
Solution : Let
a = 3 i + j + 2k = ( 3 , 1 , 2 )
b = i – 3j + 4k = ( 1 , - 3 , 4 ) represents diagonals of the parallelogram,
(I)axb =
i
j
k
3
1
2
1
-3
4
= i [ 4 + 6 ] – j [ 12 - 2 ] + k [ - 9 - 1 ]
= 10 i - 10 j - 10 k
= 10 { i – j - k }
| a x b | = 10 √ ( 1 + 1 + 1 ) = 10 √3 units.
|axb|
Area of the parallelogram =
10 √3
=
2
= 5√3
2
square units.
13. Find the area of the triangle , whose two adjecent sides are given by the vectors,
i+4j–k
&
i + j + 2k.
solution : Let
a= i+4j–k =(1 ,4 ,-1)
b = i + j + 2k
axb=
=(1 ,1 ,2 )
i
j
k
1
4
-1
1
1
2
=i[8+1]–j[2+1]+k[1–4]
=9i–3j–3k
=3{3i-j–k}
| a x b | = 3√( 9 + 1 + 1 ) = 3√11 units.
|axb|
Area of the triangle =
3√11
=
2
square units
2
14. Find the area of the triangle whose vertices are ( 1 , - 1 , 2 ) , ( 2 , 1 , - 1 ) and
( 3 , -1 , 2 )
Solution : Let O be the fixed point,
OA = position vector of A = ( 1 , - 1 , 2 )
OB = position vector of B = ( 2 , 1 , - 2 )
OC = position vector of C = ( 3 , - 1 , 2 )
AB = OB – OA = ( 1 , 2 , - 4 )
AC = OC – OA = ( 2 , 0 , 0 )
i
AB x AC =
j
k
1
2 -4
2
0
0
=i[0–0]–j[0+8]+k[0–4]
= 0i–8j–4k
=4{0i–2j–k}
| AB x AC | = 4√( 0 + 4 + 1 ) = 4√5 units
| AB x AC |
Area of the triangle ABC =
4√5
=
2
= 2√5 square units
2
15. Prove that , ( 2 a + 3 b ) x ( a + 4 b ) = 5 ( a x b )
Solution : consider,
( 2 a + 3 b ) x ( a + 4 b ) = 2 ( a x a ) + 8 ( a x b ) + 3 ( b x a ) + 12 ( b x b )
= 2 ( 0 ) + 8 ( a x b ) - 3 ( a x b ) + 12 ( 0 )
=5(a x b)
16. Find the volume of the parallelipiped whose co-terminal edges are represented by the
vectors 2 i - 3 j + 4 k , i + 2 j - k & 3 i - j + 2 k.
solution : Let
a = 2 i - 3 j + 4 k = ( 2 , -3 , 4 )
b=
i+2j- k
= ( 1 , 2 , -1 )
c= 3i- j +2k
=(3 ,-1 ,2)
then, volume of the parallelopiped object with co-terminal edges a , b
& c
=[a , b , c ]
=
2
-3
4
1
2
-1
3
-1
2
=2[4–1]+3[2+3]+4[-1–6]
= 2 ( 3 ) + 3 ( 5 ) + 4 ( -7 )
= 6 + 15 – 28
= -7
= 7 cubic units.
17. Show that the vectors i + j + k , 3 i + 4 j + 2 k & 3 i + j + 5 k are coplanar.
Solution : let a = i + j + k
b=3i+4j+2k
c=3i+j+5k
consider,
[ a
b
c ] =
1
1
1
3
4
2
3
1
5
= 1 [ 20 – 2 ] - 1 [ 15 – 6 ] + 1 [ 3 – 12 ]
=0
Therefore , the vectors a , b
& c are coplanar.
18. Show that the points with position vectors,
( i ) i + j + k , 2i + 3 j + 4 k , 3 i + j + 2 k & - i + j
( ii ) - 6a + 3 b + 2 c , 3 a – 2 b + 4 c , 5 a + 7 b + 3 c & - 13 a + 17 b – c
are coplanar.
Solution : ( i ) Let O be the fixed point.
OA = position vector of A = ( 1 , 1 , 1 )
OB = position vector of B = ( 2 , 3 , 4 )
OC = position vector of C = ( 3 , 1 , 2 )
OD = position vector of D = ( - 1 , 1 , 0 )
AB = OB – OA = ( 1 , 2 , 3 )
AC = OC – OA = ( 2 , 0 , 1 )
AD = OD – OA = ( - 2 , 0 , -1 )
Consider,
[ AB AC AD ] =
= -
=0
1
2
3
2
0
1
-2 0
-1
1
2
3
2
0
1
2
0
1
{ since, second and third rows are identical }
Therefore the points A , B , C & D are coplanar.
Solution : ( ii ) Let O be the fixed point.
Let O be the fixed point.
OA = position vector of A = - 6a + 3 b + 2 c
OB = position vector of B = 3 a – 2 b + 4 c
OC = position vector of C = 5 a + 7 b + 3 c
OD = position vector of D = - 13 a + 17 b – c
AB = OB – OA = 9a – 5b + 2c
AC = OC – OA = 11a + 4b + c
AD = OD – OA = - 7a + 14b – 3c
Consider,
[ AB AC AD ] =
9
-5
2
11
4
1
14
-3
-7
= 9 [ - 12 – 14 ] + 5 [ - 33 + 7 ] + 2 [ 154 + 28 ]
= 0
Therefore the points A , B , C & D are coplanar.
19. If the vectors 3 i + j – 2 k , I + 2 j – 3k & 3 i + m j + 5 k are coplanar , find ‘m’.
Solutions: Let
a =3i+j–2k,
b = i + 2 j – 3k & c = 3 i + m j + 5 k
are coplanar vectors,
therefore,
[ a
b
c ] =0
3
1
-2
1
2
-3
3
m
5
= 0
3 [ 10 + 3m ] – 1 [ 5 + 9 ] – 2 [ m – 6 ] = 0
30 + 9m – 14 – 2m + 12 = 0
7m + 28 = 0
m=-4
20. A , B , C & D are the points with position vectors 3 i – 2 j – k , 2 i + 3 j – 4 k ,
- i + 2 j + 2 k & 4 i + 5 j + λk respectively . If the points A , B , C & D lie on a plane, Find the
value of ‘λ’.
Solution : Le O be the fixed point.
OA = position vector of A = 3 i – 2 j – k
=(3 ,-2 , -1)
OB = position vector of B = 2 i + 3 j – 4 k = ( 2 , 3 , - 4 )
OC = position vector of C = - i + 2 j + 2 k = ( -1 , 2 , 2 )
OD = position vector of D = 4 i + 5 j + λk = ( 4 , 5 , λ )
AB = OB – OA
= ( - 1 , 5 , -3 )
AC = OC – OA = ( - 4 , 4 , 3 )
AD = OD – OA = ( 1
, 7 ,λ+1)
Since , A , B , C & D are coplanar ,
[ AB AC AD ] = 0
[ AD AC AB ] = 0
1
7
λ+1
-4
4
3
-1
5
-3
=0
1 [ - 12 – 15 ] – 7 [ 12 + 3 ] + (λ + 1) [ - 20 + 4 ] = 0
- 27 - 105 - 16λ – 16 = 0
- 148 – 16 λ = 0
16 λ = - 148
λ = - 148/8 = - 37/4
20..Prove that , [ a + b b + c c + a ] = 2 [ a
b c ]
Solution : Consider,
[a+b b+c c+a]=(a+b)●{(b+c)x(c+a)}
=(a+b)●{(bxc)+(bxa)+(cxc)+(cxa)}
= ( a + b ) ● {( b x c ) + ( b x a ) + 0 + ( c x a ) }
= { a ● ( b x c ) + a ● (b x a ) + a ● (c x a) }
+ { b ●(bxc)+b ●(bxa)+b ●(cxa)}
=[a
b
c]+[a
=[a
b
c]+0+0+0+0+[a
=2[a
b
b
a]+[a
c
a ]+[b
b
b
c]
c]
21. Show that , ∑ i x ( a x i ) = 2 a
Solution : Let a = a1 i + a2 j + a3 k = ( a1 , a2 , a3 )
Consider,
i
axi
=
j
k
a1 a2 a3
1 0 0
= i [ 0 – 0 ] – j [ 0 - a3 ] + k [ 0 - a2 ]
= 0i + a3 j - a2 k
Next, ,
i
i x (a x i ) =
j
k
1
0 0
0
a3 - a2
= i [ 0 – 0 ] – j [- a2 - 0 ] + k [ a3 - 0 ]
= 0i + a2 j + a3 k ,
Next,
i
axj
=
j
k
a1 a2 a3
0 1 0
= i [ 0 – a3 ] – j [ 0 - 0 ] + k [a1 - 0 ]
= - a3 i + 0 j + a1 k
c]+[b
b
a]+[b
c
a]
Therefore,
,
j x (a x j ) =
i
j
k
0
1 0
- a3 0 a1
= i [a1 – 0 ] – j [0 + 0 ] + k [ 0 + a3 ]
= a1 i + 0 j + a3 k
Similarly we may show that,
k x (a x k ) = a1 i + a2 j + 0 k
hence,
, ∑ i x ( a x i ) = { i x (a x i ) } + { j x (a x j ) } + { k x (a x k ) }
= 2 a1 i + 2 a2 j +2 a3 k
= 2 { a1 i + a2 j + a3 k }
= 2a
22. Prove that ∑ a x ( b + c ) = 0
Solution : consider,
.∑ a x ( b + c ) = a x ( b + c ) + b x ( c + a ) + c x ( a + b )
=(axb)+(axc)+(bxc)+(bxa)+(cxa)+(cxb)
=(axb)-(cxa)+(bxc)-(axb)+(cxa)-(bxc)
=0
23.Find a unit vector which should lie on the plane determined by the vectors
2 i + j + k & i + 2 j + k and perpendicular to i + j + 2k.
Solution: Let a = 2 i + j + k = ( 2 , 1 , 1 )
b=i+2j+k=(1,2,1)
c = i + j + 2k = ( 1 , 1 , 2 )
consider , ( a x b ) x c = (c ● a) b – ( c ● b ) a
---------- ( 1 )
c ● a=2+1+2=5
c ● b=1+2+2=5
(a x b) x c= 5 b – 5 a
=5( b – a )
= 5 ( -1 , 1 , 0 )
|( a x b ) x c | = 5 √ ( ! + 1 + 0 ) = 5√2 units
η=
unit vector coplanar with a & b and perpendicular to c
( a x b) x c
=
5 { - I + j + 0k}
=
|( a x b ) x c|
- i + j + 0k
=
5√2
√2
24. Prove that [ a x b , b x c , c x a ] = [ a , b , c ]² & Also, If
a x b , b x c & c x a are coplanar , then prove that , a , b & c are coplanar.
Solution : consider,
[axb ,bxc ,cxa]= ( axb)•{( b xc) x( c xa)}
------ ( 1 )
Let ( b x c ) = p, then,
( b xc) x( c xa)= p x ( c x a )
= (a•p)c- (c•p)a
Now, a • p = a • ( b x c ) = [ a , b , c ] = λ ( say )
c• p = c•(b x c ) =[c ,b ,c ]=0
therefore, ( 2 ) becomes,
( b xc) x( c xa)= (λ)c–(0)a=λc
Therefore ( 1 ) becomes,
[axb ,bxc ,cxa]= ( axb)•λc
=λ {( axb)• c}
=λ { c•( axb)}
=λ [ c , a, b ]
=λ [ a , b, c ]
= λ²
= [ a , b , c ]²
If a x b , b x c & c x a are coplanar , then,
[axb ,bxc ,cxa]= 0
[ a , b , c ]² = 0
[ a , b, c ] =0
Therefore , a
b & c are coplanar vectors.
------- ( 2 )
26. Prove by vector method that, The angle in a semi circle is a right angle.
Solution:
P
O A
B
Let AB be a diameter and O be the centre of a circle.
Let P be a point on the semi-circle.
Join PA , PB & PO.
By the law of triangle of vectors
PA = PO + OA
PB = PO + OB = PO – OA
since OB = - OA
Consider,
PA ● PB = ( PO + OA ) ● ( PO – OA )
= │PO│² - │OA│²
=0
Therefore PA perpendicular to PB
Therefore, APB = 90º
since , │PO│ = │OA│= radius of the circle.
27. In any triangle ABC, prove by vector method
a
b
(a)
=
SinA
c
=
SinB
SinC
( b ) a² = b² + c² - 2bcCosA
( c ) a = bCosC + c CosB
π–A
A
π-C
B
π–B
Solution : Let BC = a , CA = b & AB = c
Then, a + b + c = 0
Solution for ( a ): consider, a + b + c = 0
ax( a+b+c)=ax0
(axa)+(axb)+(axc)=0
0 + (axb)–(cxa)=0
(axb)=(cxa)
------ ( 1 )
C
Next, consider,
a + b + c =0
Similarly , as above,
bx( a+b+c)=bx0
(bxa)+(bxb)+(bxc)=0
-(axb)+ (bxb)+(bxc)=0
-(axb)+0+(bxc)=0
(axb)=(bxc)
------ ( 2 )
from ( 1 ) & ( 2 ) , we have,
(axb)=(bxc)=(cxa)
│ a x b │= │ b x c │ = │ c x a │
│a││b│Sin(π – C) = │b││c│Sin(π – A) = │c││a│Sin(π – B)
a b SinC = bcSinA = caSinB
dividing through out by abc, we have,
a
b
=
SinA
c
=
SinB
SinC
Solution for ( b ): consider,
a + b + c =0
a=-b–c
│a │² = │- b – c │²
│a│² = │b│² + │c│² + 2 b ● c
│a│² = │b│² + │c│² + 2 │b││c│Cos(π – A )
a² = b² + c² - 2 bcCosA
since , Cos(π – A ) = - CosA
27. prove that ( a x b ) x c = ( a • c ) b - ( b • c ) a
Solution : Since , ( a x b ) x c lies in the plane determined by a & b , their exits
scalars x & y such that ,
(a x b) x c = x a+y b
---- ( 1 )
Taking dot product with c on both sides , we have,
c• {(a x b) x c } = x(c•a)+y(c•b)
[c , (a x b) , c ] =x(c•a)+y(c•b)
0= x(c•a)+y(c•b)
x(c•a) =- y(c•b)
x
- y
=
(c•b)
= λ ( say )
(c•a)
Therefore,
x = λ( c • b )
,
y = -λ(c•a)
therefore ( 1 ) becomes,
( a x b ) x c = { λ( c • b ) } a + { - λ ( c • a )} b ------- ( 3 )
To find λ , take a = i , b = j & c = j
in ( 3 ), we have,
( i x j ) x j = { λ( j • j ) } i + { - λ ( j • i )} j
k x j =λ(1)i+λ(0)j
-
i =λi
λ=-1
substitute value of λ in ( 3 ) , we have,
( a x b ) x c = { ( - 1)( c • b ) } a + { ( 1 ) ( c • a )} b ------- ( 3 )
(a x b) x c =(a•c)b - ( b• c )a
28.Prove that , Cos ( A - B ) = CosACosB + SinA SinB
&
Cos ( A - B ) = CosACosB + SinA SinB
Solution : Consider a unit circle, x² + y² = 1
Let o be the point of reference, and it is fixed,
Let OP = position vector of P = ( CosA , SinA ) = CosA i + SinA j + 0 k
OQ = position vector of Q = (CosB , SinB ) = CosB i + SinB j + 0 k
are any two points on the circumference of the circle.
Y
Let ∟XOP = A & ∟XOQ = B
Therefore, ∟QOP = A – B
P
|OP|= √ (Cos²A + Sin²A) = 1
Q
A ‐ B |OQ|= √ (Cos²B + Sin²B) = 1
X
O OP • OQ = |OP||OQ|Cos( A – B )
= ( 1 ) ( 1 ) Cos( A – B )
= Cos( A – B )
------- ( 1 )
But,
OP • OQ = CosACosB + SinA SinB + 0
= CosACosB + SinA SinB
---------- ( 2 )
From ( 1 ) & ( 2 ) , we have,
Cos ( A - B ) = CosACosB + SinA SinB
Next, since, Sin ( - θ ) = - Sinθ
& Cos( - θ ) = Cos θ
Consider,
Cos( A + B ) = Cos{ A – (- B) }
= CosACos( - B ) + SinA Sin( - B )
= CosACosB - SinA SinB
29. prove that , Sin ( A – B ) = SinACosB – CosASinB
and
Sin ( A + B ) = SinACosB + CosASinB
Solution : Consider a unit circle, x² + y² = 1
Let o be the point of reference, and it is fixed,
Let OP = position vector of P = ( CosA , SinA ) = CosA i + SinA j + 0 k
OQ = position vector of Q = (CosB , SinB ) = CosB i + SinB j + 0 k
are any two points on the circumference of the circle.
Y
Let ∟XOP = A & ∟XOQ = B
Therefore, ∟QOP = A – B
P
|OP|= √ (Cos²A + Sin²A) = 1
Q
A ‐ B |OQ|= √ (Cos²B + Sin²B) = 1
X
O |OP x OQ| = |OP||OQ|Sin( A – B )
= ( 1 ) ( 1 ) Sin( A – B )
= Sin( A – B )
------- ( 1 )
But,
i
OP x OQ =
j
k
CosA
SinA
0
CosB
SinB
0
= i [ 0 – 0 ] – j [ 0 – 0 ] + k [ CosASinB – SinACosB]
= 0i + 0j – λk
take , λ = SinACosB - CosASinB
|OP x OQ| = √( 0 + 0 + λ² ) = √λ² = λ = SinACosB - CosASinB
Therefore , from (1) & (2) , we have,
Sin ( A – B ) = SinACosB – CosASinB
------ ( 2 )
Next, since, Sin ( - θ ) = - Sinθ
& Cos( - θ ) = Cos θ
Consider,
Sin ( A + B ) = SinACosB + CosASinB
= SinACos( - B ) + CosASin( - B )
= SinACosB - CosASinB
Related documents