Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
VECTORS 1. Define coplanar vectors. Definition : Three or more vectors lie on the same plane are called as coplanar vectors. 2. Define collinear vectors. Definition : Two or more vectors are said to be collinear vectors, when they are along the same lines or parallel lines. If a and b are parallel vectors then a = kb. For any scalar ‘k’. 3. If a = 2 i + 3j – 5k, ( i ) Find the unit vector in the direction of the vector a ( ii ) Find the direction cosines of the vector a and hence prove that, Cos2 α + Cos2 β + Cos 2γ= 1 Solution : consider, a = 2 i + 3j – 5k = ( 2 , 3 , - 5 ) | a | = √ ( 4 + 9 + 25 ) = √ 38 units a ( i ) the unit vector in the direction of the vector a = 2 i + 3j – 5k = |a| √ 38 ( ii ) direction cosines of a are cosα = 2/√ 38 , Cosβ = 3/√ 38 & Cosγ = - 5 / √ 38 Consider, Cos2 α + Cos2 β + Cos 2γ = 4/38 + 9/38 + 25/38 = 1 4. If the direction cosines of the vector are 1/5 , 3/5 & n , Find ‘n’. Solution : It is given that, cosα = 1/5 , Cosβ = 3/5 & Cosγ = n since, Cos2 α + Cos2 β + Cos 2γ = 1 1/25 + 9/25 + n² = 1 n² = 1 – 1/25 – 9 /25 n² = 15/25 = 3/5 n = ±√( 3/5) 5. Define dot product or scalar product of two vectors. Solution; If a and b are any two vectors and θ be the angle between them, then dot product of a and b is defined by a • b = | a | | b |Cosθ b θ a 6. Define cross product or vector product of any two vectors. Solution; If a and b are any two vectors and θ be the angle between Them & η unit vector perpendicular to both a & b , then, a X b = | a | | b | η Sinθ a η θ b 7. If a = i – 2j + 2k & b = 2i + j – 3k , Find (i) a•b ( ii ) cosine of the angle between the vectors a & b, ( iii ) projection of a in the direction of b Solution ; consider, a = i – 2j + 2k = ( 1 , -2 , 2 ) b = 2i + j – 3k = ( 2 , 1 - 3 ) (i) a•b =2–2–6=-6 ( ii ) | a | = √ ( 1 + 4 + 4 ) = 3 units | b | = √ ( 4 + 1 + 9 ) = √14 units If θ be the angle between a & b then, a•b Cos θ = -6 = |a| |b| -2 = 3√14 √14 ( iii ) a • b projection of a in the direction of b = -6 = |b| √14 8. If | a | = 3 , | b | = 5 & | c | = 7 and a + b + c = 0 , find the angle between the vectors a & b. Solution: since, a + b + c = 0 , let θ be the angle between the vectors a & b a+b=- c | a + b |² = | -c |² | a |² + | b |² + 2 a • b = | c |² 9 + 25 + 2 | a || b | Cosθ = 49 9 + 25 + 2 ( 3 ) ( 5 ) Cosθ = 49 30 Cosθ = 49 - 34 30 Cosθ = 15 Cosθ = ½ θ = 60° 9. If a & b are unit vectors inclined at an angle of 60° to each other , find | a + b |. Solution: It is given that | a | = | b |.= 1 and θ = 60° Consider, | a + b |² = | a |² + | b |² + 2 a • b = | a |² + | b |² + 2 | a | | b | Cosθ = 1 + 1 + 2 (1) (1) cos60° = 2 + 2( ½) =2+1 =3 | a + b | = √ 3 units 10.If a & b are unit vectors inclined at an angle θ to each other , show that │a – b │ = 2 Sin(θ/2) Solution : Given that , │a │ = │ b │ = 1 consider , | a - b |² = | a |² + | b |² - 2 a • b = | a |² + | b |² - 2 │a│ │ b │Cosθ = 1 + 1 – 2 (1)(1) Cosθ = 2 - 2 Cosθ = 2( 1 – Cosθ ) = 2 { 2 Sin²(θ/2 )} = 4 Sin²(θ/2) Therefore │a – b │ = 2 Sin(θ/2) 11. If a = 3 i – 2j + k & (i)axb b = i + 3j + k , Find ( ii ) | a x b | ( iii ) sinθ where θ is the angle between a & b ( iv ) unit vector perpendicular to both a & b. Consider, a = 3 i – 2j + k = ( 3 , - 2 , 1 ) b=i+3j+k =(1 ,3 ,1) (I)axb = i j k 3 -2 1 1 3 1 =i[-2–3]–j[3–1]+k[9+2] = - 5 i – 2 j + 11 k ( ii ) | a x b | = √ ( 25 + 4 + 121 ) = √150 = 5√6 units. ( iii ) | a x b | = 5√6 units., | a | = √ ( 9 + 4 + 1 ) = √14 units | b | = √ (1 + 9 + 1 ) = √11 units |axb| Sinθ = 5√6 = |a| |b| √14 √11 (Iv) Unit vector perpendicular to both a & b axb = = |a x b| - 5 i – 2 j + 11 k 5√6 11. Find the area of the parallelogram whose adjecent sides are given by the vectors, i + 2j + 3k & - 3 i – 2 j + k. solution : consider, a = i + 2j + 3k = ( 1 , 2 , 3 ) b= -3i–2j+k=(-3 ,-2 ,1) (I)axb = i j k 1 2 3 -3 -2 1 =i[2+6]–j[1+9]+k[-2+6] = 8 i - 10 j + 4 k =2{4I–5j+2k} | a x b | = 2 √ ( 16 + 25 + 4 ) = 2 √45 units. Area of the parallelogram = | a x b |= 2 √45 square units. 12. Find the area of the parallelogram, whose diagonals are represented by the vectors 3 i + j + 2k & i – 3j + 4k Solution : Let a = 3 i + j + 2k = ( 3 , 1 , 2 ) b = i – 3j + 4k = ( 1 , - 3 , 4 ) represents diagonals of the parallelogram, (I)axb = i j k 3 1 2 1 -3 4 = i [ 4 + 6 ] – j [ 12 - 2 ] + k [ - 9 - 1 ] = 10 i - 10 j - 10 k = 10 { i – j - k } | a x b | = 10 √ ( 1 + 1 + 1 ) = 10 √3 units. |axb| Area of the parallelogram = 10 √3 = 2 = 5√3 2 square units. 13. Find the area of the triangle , whose two adjecent sides are given by the vectors, i+4j–k & i + j + 2k. solution : Let a= i+4j–k =(1 ,4 ,-1) b = i + j + 2k axb= =(1 ,1 ,2 ) i j k 1 4 -1 1 1 2 =i[8+1]–j[2+1]+k[1–4] =9i–3j–3k =3{3i-j–k} | a x b | = 3√( 9 + 1 + 1 ) = 3√11 units. |axb| Area of the triangle = 3√11 = 2 square units 2 14. Find the area of the triangle whose vertices are ( 1 , - 1 , 2 ) , ( 2 , 1 , - 1 ) and ( 3 , -1 , 2 ) Solution : Let O be the fixed point, OA = position vector of A = ( 1 , - 1 , 2 ) OB = position vector of B = ( 2 , 1 , - 2 ) OC = position vector of C = ( 3 , - 1 , 2 ) AB = OB – OA = ( 1 , 2 , - 4 ) AC = OC – OA = ( 2 , 0 , 0 ) i AB x AC = j k 1 2 -4 2 0 0 =i[0–0]–j[0+8]+k[0–4] = 0i–8j–4k =4{0i–2j–k} | AB x AC | = 4√( 0 + 4 + 1 ) = 4√5 units | AB x AC | Area of the triangle ABC = 4√5 = 2 = 2√5 square units 2 15. Prove that , ( 2 a + 3 b ) x ( a + 4 b ) = 5 ( a x b ) Solution : consider, ( 2 a + 3 b ) x ( a + 4 b ) = 2 ( a x a ) + 8 ( a x b ) + 3 ( b x a ) + 12 ( b x b ) = 2 ( 0 ) + 8 ( a x b ) - 3 ( a x b ) + 12 ( 0 ) =5(a x b) 16. Find the volume of the parallelipiped whose co-terminal edges are represented by the vectors 2 i - 3 j + 4 k , i + 2 j - k & 3 i - j + 2 k. solution : Let a = 2 i - 3 j + 4 k = ( 2 , -3 , 4 ) b= i+2j- k = ( 1 , 2 , -1 ) c= 3i- j +2k =(3 ,-1 ,2) then, volume of the parallelopiped object with co-terminal edges a , b & c =[a , b , c ] = 2 -3 4 1 2 -1 3 -1 2 =2[4–1]+3[2+3]+4[-1–6] = 2 ( 3 ) + 3 ( 5 ) + 4 ( -7 ) = 6 + 15 – 28 = -7 = 7 cubic units. 17. Show that the vectors i + j + k , 3 i + 4 j + 2 k & 3 i + j + 5 k are coplanar. Solution : let a = i + j + k b=3i+4j+2k c=3i+j+5k consider, [ a b c ] = 1 1 1 3 4 2 3 1 5 = 1 [ 20 – 2 ] - 1 [ 15 – 6 ] + 1 [ 3 – 12 ] =0 Therefore , the vectors a , b & c are coplanar. 18. Show that the points with position vectors, ( i ) i + j + k , 2i + 3 j + 4 k , 3 i + j + 2 k & - i + j ( ii ) - 6a + 3 b + 2 c , 3 a – 2 b + 4 c , 5 a + 7 b + 3 c & - 13 a + 17 b – c are coplanar. Solution : ( i ) Let O be the fixed point. OA = position vector of A = ( 1 , 1 , 1 ) OB = position vector of B = ( 2 , 3 , 4 ) OC = position vector of C = ( 3 , 1 , 2 ) OD = position vector of D = ( - 1 , 1 , 0 ) AB = OB – OA = ( 1 , 2 , 3 ) AC = OC – OA = ( 2 , 0 , 1 ) AD = OD – OA = ( - 2 , 0 , -1 ) Consider, [ AB AC AD ] = = - =0 1 2 3 2 0 1 -2 0 -1 1 2 3 2 0 1 2 0 1 { since, second and third rows are identical } Therefore the points A , B , C & D are coplanar. Solution : ( ii ) Let O be the fixed point. Let O be the fixed point. OA = position vector of A = - 6a + 3 b + 2 c OB = position vector of B = 3 a – 2 b + 4 c OC = position vector of C = 5 a + 7 b + 3 c OD = position vector of D = - 13 a + 17 b – c AB = OB – OA = 9a – 5b + 2c AC = OC – OA = 11a + 4b + c AD = OD – OA = - 7a + 14b – 3c Consider, [ AB AC AD ] = 9 -5 2 11 4 1 14 -3 -7 = 9 [ - 12 – 14 ] + 5 [ - 33 + 7 ] + 2 [ 154 + 28 ] = 0 Therefore the points A , B , C & D are coplanar. 19. If the vectors 3 i + j – 2 k , I + 2 j – 3k & 3 i + m j + 5 k are coplanar , find ‘m’. Solutions: Let a =3i+j–2k, b = i + 2 j – 3k & c = 3 i + m j + 5 k are coplanar vectors, therefore, [ a b c ] =0 3 1 -2 1 2 -3 3 m 5 = 0 3 [ 10 + 3m ] – 1 [ 5 + 9 ] – 2 [ m – 6 ] = 0 30 + 9m – 14 – 2m + 12 = 0 7m + 28 = 0 m=-4 20. A , B , C & D are the points with position vectors 3 i – 2 j – k , 2 i + 3 j – 4 k , - i + 2 j + 2 k & 4 i + 5 j + λk respectively . If the points A , B , C & D lie on a plane, Find the value of ‘λ’. Solution : Le O be the fixed point. OA = position vector of A = 3 i – 2 j – k =(3 ,-2 , -1) OB = position vector of B = 2 i + 3 j – 4 k = ( 2 , 3 , - 4 ) OC = position vector of C = - i + 2 j + 2 k = ( -1 , 2 , 2 ) OD = position vector of D = 4 i + 5 j + λk = ( 4 , 5 , λ ) AB = OB – OA = ( - 1 , 5 , -3 ) AC = OC – OA = ( - 4 , 4 , 3 ) AD = OD – OA = ( 1 , 7 ,λ+1) Since , A , B , C & D are coplanar , [ AB AC AD ] = 0 [ AD AC AB ] = 0 1 7 λ+1 -4 4 3 -1 5 -3 =0 1 [ - 12 – 15 ] – 7 [ 12 + 3 ] + (λ + 1) [ - 20 + 4 ] = 0 - 27 - 105 - 16λ – 16 = 0 - 148 – 16 λ = 0 16 λ = - 148 λ = - 148/8 = - 37/4 20..Prove that , [ a + b b + c c + a ] = 2 [ a b c ] Solution : Consider, [a+b b+c c+a]=(a+b)●{(b+c)x(c+a)} =(a+b)●{(bxc)+(bxa)+(cxc)+(cxa)} = ( a + b ) ● {( b x c ) + ( b x a ) + 0 + ( c x a ) } = { a ● ( b x c ) + a ● (b x a ) + a ● (c x a) } + { b ●(bxc)+b ●(bxa)+b ●(cxa)} =[a b c]+[a =[a b c]+0+0+0+0+[a =2[a b b a]+[a c a ]+[b b b c] c] 21. Show that , ∑ i x ( a x i ) = 2 a Solution : Let a = a1 i + a2 j + a3 k = ( a1 , a2 , a3 ) Consider, i axi = j k a1 a2 a3 1 0 0 = i [ 0 – 0 ] – j [ 0 - a3 ] + k [ 0 - a2 ] = 0i + a3 j - a2 k Next, , i i x (a x i ) = j k 1 0 0 0 a3 - a2 = i [ 0 – 0 ] – j [- a2 - 0 ] + k [ a3 - 0 ] = 0i + a2 j + a3 k , Next, i axj = j k a1 a2 a3 0 1 0 = i [ 0 – a3 ] – j [ 0 - 0 ] + k [a1 - 0 ] = - a3 i + 0 j + a1 k c]+[b b a]+[b c a] Therefore, , j x (a x j ) = i j k 0 1 0 - a3 0 a1 = i [a1 – 0 ] – j [0 + 0 ] + k [ 0 + a3 ] = a1 i + 0 j + a3 k Similarly we may show that, k x (a x k ) = a1 i + a2 j + 0 k hence, , ∑ i x ( a x i ) = { i x (a x i ) } + { j x (a x j ) } + { k x (a x k ) } = 2 a1 i + 2 a2 j +2 a3 k = 2 { a1 i + a2 j + a3 k } = 2a 22. Prove that ∑ a x ( b + c ) = 0 Solution : consider, .∑ a x ( b + c ) = a x ( b + c ) + b x ( c + a ) + c x ( a + b ) =(axb)+(axc)+(bxc)+(bxa)+(cxa)+(cxb) =(axb)-(cxa)+(bxc)-(axb)+(cxa)-(bxc) =0 23.Find a unit vector which should lie on the plane determined by the vectors 2 i + j + k & i + 2 j + k and perpendicular to i + j + 2k. Solution: Let a = 2 i + j + k = ( 2 , 1 , 1 ) b=i+2j+k=(1,2,1) c = i + j + 2k = ( 1 , 1 , 2 ) consider , ( a x b ) x c = (c ● a) b – ( c ● b ) a ---------- ( 1 ) c ● a=2+1+2=5 c ● b=1+2+2=5 (a x b) x c= 5 b – 5 a =5( b – a ) = 5 ( -1 , 1 , 0 ) |( a x b ) x c | = 5 √ ( ! + 1 + 0 ) = 5√2 units η= unit vector coplanar with a & b and perpendicular to c ( a x b) x c = 5 { - I + j + 0k} = |( a x b ) x c| - i + j + 0k = 5√2 √2 24. Prove that [ a x b , b x c , c x a ] = [ a , b , c ]² & Also, If a x b , b x c & c x a are coplanar , then prove that , a , b & c are coplanar. Solution : consider, [axb ,bxc ,cxa]= ( axb)•{( b xc) x( c xa)} ------ ( 1 ) Let ( b x c ) = p, then, ( b xc) x( c xa)= p x ( c x a ) = (a•p)c- (c•p)a Now, a • p = a • ( b x c ) = [ a , b , c ] = λ ( say ) c• p = c•(b x c ) =[c ,b ,c ]=0 therefore, ( 2 ) becomes, ( b xc) x( c xa)= (λ)c–(0)a=λc Therefore ( 1 ) becomes, [axb ,bxc ,cxa]= ( axb)•λc =λ {( axb)• c} =λ { c•( axb)} =λ [ c , a, b ] =λ [ a , b, c ] = λ² = [ a , b , c ]² If a x b , b x c & c x a are coplanar , then, [axb ,bxc ,cxa]= 0 [ a , b , c ]² = 0 [ a , b, c ] =0 Therefore , a b & c are coplanar vectors. ------- ( 2 ) 26. Prove by vector method that, The angle in a semi circle is a right angle. Solution: P O A B Let AB be a diameter and O be the centre of a circle. Let P be a point on the semi-circle. Join PA , PB & PO. By the law of triangle of vectors PA = PO + OA PB = PO + OB = PO – OA since OB = - OA Consider, PA ● PB = ( PO + OA ) ● ( PO – OA ) = │PO│² - │OA│² =0 Therefore PA perpendicular to PB Therefore, APB = 90º since , │PO│ = │OA│= radius of the circle. 27. In any triangle ABC, prove by vector method a b (a) = SinA c = SinB SinC ( b ) a² = b² + c² - 2bcCosA ( c ) a = bCosC + c CosB π–A A π-C B π–B Solution : Let BC = a , CA = b & AB = c Then, a + b + c = 0 Solution for ( a ): consider, a + b + c = 0 ax( a+b+c)=ax0 (axa)+(axb)+(axc)=0 0 + (axb)–(cxa)=0 (axb)=(cxa) ------ ( 1 ) C Next, consider, a + b + c =0 Similarly , as above, bx( a+b+c)=bx0 (bxa)+(bxb)+(bxc)=0 -(axb)+ (bxb)+(bxc)=0 -(axb)+0+(bxc)=0 (axb)=(bxc) ------ ( 2 ) from ( 1 ) & ( 2 ) , we have, (axb)=(bxc)=(cxa) │ a x b │= │ b x c │ = │ c x a │ │a││b│Sin(π – C) = │b││c│Sin(π – A) = │c││a│Sin(π – B) a b SinC = bcSinA = caSinB dividing through out by abc, we have, a b = SinA c = SinB SinC Solution for ( b ): consider, a + b + c =0 a=-b–c │a │² = │- b – c │² │a│² = │b│² + │c│² + 2 b ● c │a│² = │b│² + │c│² + 2 │b││c│Cos(π – A ) a² = b² + c² - 2 bcCosA since , Cos(π – A ) = - CosA 27. prove that ( a x b ) x c = ( a • c ) b - ( b • c ) a Solution : Since , ( a x b ) x c lies in the plane determined by a & b , their exits scalars x & y such that , (a x b) x c = x a+y b ---- ( 1 ) Taking dot product with c on both sides , we have, c• {(a x b) x c } = x(c•a)+y(c•b) [c , (a x b) , c ] =x(c•a)+y(c•b) 0= x(c•a)+y(c•b) x(c•a) =- y(c•b) x - y = (c•b) = λ ( say ) (c•a) Therefore, x = λ( c • b ) , y = -λ(c•a) therefore ( 1 ) becomes, ( a x b ) x c = { λ( c • b ) } a + { - λ ( c • a )} b ------- ( 3 ) To find λ , take a = i , b = j & c = j in ( 3 ), we have, ( i x j ) x j = { λ( j • j ) } i + { - λ ( j • i )} j k x j =λ(1)i+λ(0)j - i =λi λ=-1 substitute value of λ in ( 3 ) , we have, ( a x b ) x c = { ( - 1)( c • b ) } a + { ( 1 ) ( c • a )} b ------- ( 3 ) (a x b) x c =(a•c)b - ( b• c )a 28.Prove that , Cos ( A - B ) = CosACosB + SinA SinB & Cos ( A - B ) = CosACosB + SinA SinB Solution : Consider a unit circle, x² + y² = 1 Let o be the point of reference, and it is fixed, Let OP = position vector of P = ( CosA , SinA ) = CosA i + SinA j + 0 k OQ = position vector of Q = (CosB , SinB ) = CosB i + SinB j + 0 k are any two points on the circumference of the circle. Y Let ∟XOP = A & ∟XOQ = B Therefore, ∟QOP = A – B P |OP|= √ (Cos²A + Sin²A) = 1 Q A ‐ B |OQ|= √ (Cos²B + Sin²B) = 1 X O OP • OQ = |OP||OQ|Cos( A – B ) = ( 1 ) ( 1 ) Cos( A – B ) = Cos( A – B ) ------- ( 1 ) But, OP • OQ = CosACosB + SinA SinB + 0 = CosACosB + SinA SinB ---------- ( 2 ) From ( 1 ) & ( 2 ) , we have, Cos ( A - B ) = CosACosB + SinA SinB Next, since, Sin ( - θ ) = - Sinθ & Cos( - θ ) = Cos θ Consider, Cos( A + B ) = Cos{ A – (- B) } = CosACos( - B ) + SinA Sin( - B ) = CosACosB - SinA SinB 29. prove that , Sin ( A – B ) = SinACosB – CosASinB and Sin ( A + B ) = SinACosB + CosASinB Solution : Consider a unit circle, x² + y² = 1 Let o be the point of reference, and it is fixed, Let OP = position vector of P = ( CosA , SinA ) = CosA i + SinA j + 0 k OQ = position vector of Q = (CosB , SinB ) = CosB i + SinB j + 0 k are any two points on the circumference of the circle. Y Let ∟XOP = A & ∟XOQ = B Therefore, ∟QOP = A – B P |OP|= √ (Cos²A + Sin²A) = 1 Q A ‐ B |OQ|= √ (Cos²B + Sin²B) = 1 X O |OP x OQ| = |OP||OQ|Sin( A – B ) = ( 1 ) ( 1 ) Sin( A – B ) = Sin( A – B ) ------- ( 1 ) But, i OP x OQ = j k CosA SinA 0 CosB SinB 0 = i [ 0 – 0 ] – j [ 0 – 0 ] + k [ CosASinB – SinACosB] = 0i + 0j – λk take , λ = SinACosB - CosASinB |OP x OQ| = √( 0 + 0 + λ² ) = √λ² = λ = SinACosB - CosASinB Therefore , from (1) & (2) , we have, Sin ( A – B ) = SinACosB – CosASinB ------ ( 2 ) Next, since, Sin ( - θ ) = - Sinθ & Cos( - θ ) = Cos θ Consider, Sin ( A + B ) = SinACosB + CosASinB = SinACos( - B ) + CosASin( - B ) = SinACosB - CosASinB