Download Question 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
King Fahd University of Petroleum and Minerals
Prep-Year Math Program
Math 001 - Term 161
Recitation (R1, R2)
Question 1: How many rational and irrational numbers are possible between 0
and 1 ?
(a) 1
(b) Finite
(c) 0
(d) Infinite
(e) 2
Question 2: Á will contain how many elements from the original set A
(a) 1
(b) Infinite
(c) 0
(d) All elements
in A
(e) More elements
than U
Question 3: Given the sets
U= {y|y is an even number with βˆ’8 < 𝑦 < 10}
A= {βˆ’6, βˆ’4, βˆ’2, 0}
B={y|y is an even prime number only}
C= {y|y is a composite number < 9}
Then 𝐴́ ∩ (𝐡 βˆͺ 𝐢)́ =.
(a) 𝐴́
(b) 𝐡 βˆͺ 𝐢
(c) 𝐴
(d) π‘ˆ
Question 4: Which one of the following statements is TRUE?
(a) Every rational number has a multiplicative inverse
(b) Every irrational number is not real number
(c) Every even integer has an additive inverse
(d) πœ‹ =
22
7
(e) The set { βˆ’1, 0 } is closed under addition
(e) βˆ…
Question 5: Which one of the following statements is TRUE?
(a) The set of irrational numbers is closed with respect to multiplication.
(b) The set {βˆ’1, 0, 1} is closed with respect to multiplication.
(c) If π‘₯ is any integer and 𝑦 is any irrational number, then π‘₯⁄𝑦 is irrational.
(d) The distributive law states that π‘Ž ÷ (𝑏 + 𝑐) = (π‘Ž ÷ 𝑏) + (π‘Ž ÷ 𝑐)
(e) Any irrational number has a terminating or repeating decimal expansion.
Question 6: Given
1
3
2
2
1
3
3
4
≀ π‘₯ < , the expression |π‘₯ βˆ’ | βˆ’ | βˆ’ π‘₯| can be written
without the absolute value symbols as:
(a) βˆ’
11
(b) 2π‘₯ βˆ’
12
11
(c)
12
11
12
βˆ’ 2π‘₯
(d) βˆ’
5
12
(e)
5
12
Question 7: Which from the following set has the closure property with respect to
multiplication?
(a) {βˆ’1}
(b) {βˆ’2, 1}
(c) {1, 2}
(d) {βˆ’1, 1}
(e) {βˆ’1, 0}
Question 8: By performing the correct order of operations of the following
expression
[βˆ’2 +
11
5
(a) βˆ’
(b)
(c) βˆ’
(d)
79
4
7
3
97
49
12
(e) βˆ’
11
1
1
βˆ’32
+ (βˆ’ )] ÷ ( βˆ’ ) βˆ’ (
5
3
4
4
5
12
4
)+2 =
King Fahd University of Petroleum and Minerals
Prep-Year Math Program
Math 001 - Term 161
Recitation (R.3)
Question 1: If
3x 4 ο€­ 12x 2  6 x ο€­ 15
R( x)
ο€½ Q( x)  2
2
x 1
x 1
then find 𝑅(π‘₯) and state the
degree and the leading coefficient of 𝑄(π‘₯).
2
1
7
Question 2: If the coefficient of π‘₯ 3 in the product π‘₯ 2 (π‘˜π‘₯ βˆ’ ) (5π‘₯ + ) is βˆ’ ,
π‘˜
π‘˜
3
then π‘˜ is equal to
(a) βˆ’3
(b) βˆ’
30
4
(c) 3
(d) √
6
7
(e) βˆ’βˆš
Question 3: Which one of the following is a polynomial of degree 2?
2
(a) π‘₯ 2 + + π‘₯ + 1
π‘₯
(b) π‘₯ 2 + π‘₯ 3⁄2 + √2
(c) (3π‘₯ + 2)3 + √2π‘₯ 2 βˆ’ 27π‘₯ 3
(d)
π‘₯
π‘₯ 3 βˆ’1
(e) π‘₯ 2 + π‘₯ + 1 + √π‘₯
Question 4: 𝐼𝑓 𝑋 = (π‘Ž βˆ’ 2𝑏)3 π‘Žπ‘›π‘‘ π‘Œ = (2π‘Ž + 𝑏)3 , π‘‘β„Žπ‘’π‘› 𝑓𝑖𝑛𝑑 𝑋 βˆ’ π‘Œ
6
7
King Fahd University of Petroleum and Minerals
Prep-Year Math Program
Math 001 - Term 161
Recitation (R.4)
Question 1: Factor the following completely
(a) 5π‘₯ 6 βˆ’ 40𝑦 3
1
1
3
(b) 3π‘₯ βˆ’2 + 4π‘₯ 2 + π‘₯ 2
(c) 6𝑝4 + 7𝑝2 βˆ’ 3
(d) π‘Ž3 βˆ’ 𝑏 3 βˆ’ 1 + π‘Ž3 𝑏 3
(e) 9(π‘Ž βˆ’ 4)2 + 30(π‘Ž βˆ’ 4) + 25
Question 2: The sum of all prime factors of 4𝑦 4 βˆ’ 13𝑦 2 + 9
(a) 4𝑦 2 + 6
(b) 4𝑦 2 βˆ’ 6
(c) 6𝑦
(d) βˆ’6𝑦
(e) 10 βˆ’ 5𝑦 2
Question 3: The possible value(s) of π‘˜ that makes the trinomial
36π‘₯ 2 + π‘˜π‘₯𝑦 + 49𝑦 2 a perfect square is (are)
(a) 84
(b) -84
(c) ± 84
(d) ± 42
Question 4: One of the factor of 4π‘₯ 2 βˆ’ 8π‘₯𝑦 βˆ’ 5𝑦 2 βˆ’ 4π‘₯ + 10𝑦
(a) πŸπ’™ + π’š βˆ’ 𝟐
(b) πŸ’π’™ βˆ’ πŸ’π’š βˆ’ 𝟐
(c) πŸπ’™ + π’š
(d) πŸπ’™ βˆ’ π’š + 𝟐
(e) πŸ“π’™ βˆ’ πŸπ’š
(e) -42
King Fahd University of Petroleum and Minerals
Prep-Year Math Program
Math 001 - Term 161
Recitation (R.5)
Question 1: Simplify the rational expression
(a)
(𝑏)
2
+
4+π‘₯
4
2βˆ’π‘₯
+
16
π‘₯ 2 βˆ’16
+
5
π‘₯ 2 +2π‘₯+4
6
4βˆ’π‘₯
÷
π‘₯ 2 βˆ’4π‘₯+4
π‘₯ 3 βˆ’8
Question 2: Simplify the following expression
1
(a)
π‘₯+π‘₯+2
1
π‘₯βˆ’π‘₯+2
(𝑏) 1 +
1
1
1 + 1+π‘₯
Question 3: The expression
(π‘Ž)
π‘₯+1
π‘₯βˆ’2
(b)
2π‘₯2 βˆ’3π‘₯βˆ’2
π‘₯2 βˆ’1
2
2π‘₯ +5π‘₯+2
π‘₯2 +π‘₯βˆ’2
π‘₯βˆ’2
π‘₯+1
(c)
simplifies to
2π‘₯+1
π‘₯+2
(d)
π‘₯+2
2π‘₯+1
(e)
Question 4: The least common denominator (LCD) of the expression
1
3
5
+
βˆ’
π‘₯ 3 βˆ’ 1 14(π‘₯ βˆ’ 1)3 24(π‘₯ 3 + π‘₯ 2 + π‘₯)
(a) 2π‘₯(π‘₯ βˆ’ 1)3 (π‘₯ 2 + π‘₯ + 1)
(b)168π‘₯(π‘₯ βˆ’ 1)3 (π‘₯ 2 + π‘₯ + 1)
(c) 2(π‘₯ βˆ’ 1)3 (π‘₯ + 1)3
(d) 168(π‘₯ βˆ’ 1)3 (π‘₯ + 1)3
(e) 2(π‘₯ + 1)3 (π‘₯ 3 βˆ’ 1)
π‘₯+2
π‘₯βˆ’1
King Fahd University of Petroleum and Minerals
Prep-Year Math Program
Math 001 - Term 161
Recitation (R.6)
βˆ’2
Question 1: The expression
5
9
(π‘Ž) βˆ’
(b)
βˆ’27 3
( 8 )
41
9
1
6
1
6
βˆ’ (2) (βˆ’32 ) + 3(βˆ’2)0
(c)
31
23
(d)
9
9
(e)
Question 2: Simplify the expression below:
π‘₯ 1⁄2 𝑦 2
4
4π‘₯ βˆ’2 𝑦 βˆ’4
( 2𝑦1⁄4 ) (
𝑦2
1⁄2
)
Where π‘₯ > 0 π‘Žπ‘›π‘‘ 𝑦 > 0
Question 3: Simplify the expression:
π‘₯ βˆ’2 βˆ’ 𝑦 βˆ’2
π‘₯ βˆ’1 + 𝑦 βˆ’1
Question 4: Simplify the expression:
1
3
(7 βˆ’ 3π‘₯)1⁄2 + π‘₯(7 βˆ’ 3π‘₯)βˆ’2
2
7 βˆ’ 3π‘₯
π‘₯ βˆ’2⁄3
Question 5: The value of the expression (
π‘₯ = 1, 𝑦 = 4, 𝑧 = 32 is
(a) βˆ’1
(b) βˆ’3
(c) 5
(d) βˆ’5
(e) 3
π‘₯ βˆ’2
1⁄6
) (π‘¦βˆ’3)
𝑦 1 ⁄2
+ 𝑧 2/5 using
49
9
King Fahd University of Petroleum and Minerals
Prep-Year Math Program
Math 001 - Term 161
Recitation (R.7)
Question 1: Find the value of
𝟐
πŸ‘
βˆšπŸ–πŸ
+πŸ‘
πŸ’
𝟏
βˆšπŸπŸ’
βˆ’πŸ‘
βˆšπŸ‘
21π‘₯ 3
3
Question 2: Simplify the expression 5π‘₯ √24π‘₯ 4 + 3
βˆšβˆ’9π‘₯ 2
Question 3: If M=
βˆ’πŸ’
𝟏 + 𝟐√𝟐𝟎 βˆ’ βˆšπŸ’πŸ“
πŸ’
and N=
βˆšπŸπŸ’πŸ‘
βˆšβˆšπŸ‘
then find the sum of M and N
(a) βˆ’2 βˆ’ √2
(b) 2 βˆ’ √2
(c) 4 βˆ’ √5
(d) 4 βˆ’ 2√5
(e) βˆ’4 βˆ’ √5
Question 4: Simplify the expression and write the answer without absolute value
πŸ‘
symbols: √(βˆ’πŸ•)𝟐 βˆ’ √49 + 42π‘₯ + 9π‘₯ 2 + √(βˆ’7)πŸ‘ where π‘₯ < βˆ’3
Question 5: By rationalizing the denominator,
(a) √π‘₯ βˆ’ βˆšπ‘¦
(b) 2√π‘₯
(c) 2βˆšπ‘¦
(d) 2(√π‘₯ + βˆšπ‘¦)
(e) 2
2π‘₯βˆ’2𝑦
√π‘₯βˆ’βˆšπ‘¦
is equal to
Related documents