Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name: ________________________ Class: ___________________ Date: __________ ID: A Chapter 2 Skills Practice Shape and Structure Forms of Quadratic Functions Vocabulary Write an example for each form of quadratic function and tell whether the form helps determine the x-intercepts, the y-intercept, or the vertex of the graph. Then describe how to determine the concavity of a parabola. 1. Standard form: 2. Factored form: 3. Vertex form: 4. Concavity of a parabola: Problem Set Circle the function that matches each graph. Explain your reasoning. 5. f(x) = 6(x − 2)(x − 8) 1 f(x) = − (x + 2)(x + 8) 2 f(x) = 1 (x + 2)(x + 8) 2 f(x) = 1 (x − 2)(x − 8) 2 1 Name: ________________________ ID: A 6. f(x) = −3(x + 2)(x − 5) f(x) = 3(x + 2)(x + 5) f(x) = 3(x − 2)(x − 5) f(x) = −3(x − 2)(x − 5) 7. f(x) = x 2 + 5x − 4 f(x) = −x 2 + 5x + 10 f(x) = x 2 + 5x + 4 f(x) = −x 2 + 5x + 4 Use the given information to determine the most efficient form you could use to write the quadratic function. Write standard form, factored form, or vertex form. 8. vertex (3, 7) and point (1, 10) 9. points (1, 0), (4,− 3), and (7, 0) 10. y-intercept (0, 3) and axis of symmetry − 3 8 11. roots (−5, 0), (13, 0) and point (−7, 40) 2 Name: ________________________ ID: A 12. maximum point (−4, − 8) and point (−3, − 15) Convert each quadratic function in factored form to standard form. 13. f(x) = (x + 5)(x − 7) 14. f(x) = (x + 2)(x + 9) 15. f(x) = 2(x − 4)(x + 1) 16. f(x) = −3(x − 1)(x − 3) 17. f(x) = 1 (x + 6)(x + 3) 3 5 18. f(x) = − (x − 6)(x + 2) 8 Convert each quadratic function in vertex form to standard form. 19. f(x) = 3(x − 4) 2 + 7 20. f(x) = −2(x + 1) 2 − 5 2 ÊÁ 7 ˆ˜˜˜ 3 Á Á 21. f(x) = 2 ÁÁ x + ˜˜ − 2 2 Ë ¯ 22. f(x) = −(x − 6) 2 + 4 1 23. f(x) = − (x − 10) 2 − 12 2 24. f(x) = 1 (x + 100) 2 + 60 20 3 Name: ________________________ ID: A 25. h(x) = (x + 2) 2 − 1 Reference Points of f(x) → (0, 0) → (1, 1) → (2, 4) → Corresponding Points on h(x) 4 Name: ________________________ ID: A 26. h(x) = (x + 7) 2 Reference Points of f(x) → (0, 0) → (1, 1) → (2, 4) → Corresponding Points on h(x) 5 Name: ________________________ ID: A 27. h(x) = x 2 − 9 Reference Points of f(x) → (0, 0) → (1, 1) → (2, 4) → Corresponding Points on h(x) Write the function that represents each graph. 28. 6 Name: ________________________ ID: A 29. 30. 31. 32. 7 Name: ________________________ ID: A 33. What’s the Point? Deriving Quadratic Functions Problem Set Use your knowledge of reference points to write an equation for the quadratic function that satisfies the given information. Use the graph to help solve each problem. 34. Given: vertex (3, 5) and point (5, − 3) 8 Name: ________________________ ID: A 35. Given: vertex (−2, − 9) and one of two x-intercepts (1, 0) 36. Given: two x-intercepts (−7, 0) and (5, 0) and one point (−4, − 9) 9 Name: ________________________ ID: A 37. Given: vertex (−6, − 1) and point (−3,35) Use a graphing calculator to determine the quadratic equation for each set of three points that lie on a parabola. 38. (−4, 12), (−2, − 14), (2, 6) 39. (5, − 56), (1, − 4), (−10, − 26) 40. (−8, 8),(−4, 6),(4, 38) 41. (−2, 3), (2, − 9), (5, − 60) 42. (0, 3), (−5, − 2.4), (15, − 7.8) 43. (−2, 13), (1, − 17), (7, 31) 10 Name: ________________________ ID: A Now It’s Getting Complex … But It’s Really Not Difficult! Complex Number Operations Vocabulary Match each term to its corresponding definition. a. b. c. d. e. f. g. h. i. j. a number in the form a + bi where a and b are real numbers and b is not equal to 0 term a of a number written in the form a + bi a polynomial with two terms pairs of numbers of the form a + bi and a − bi a number such that its square equals −1 a number in the form a + bi where a and b are real numbers a polynomial with three terms a number of the form bi where b is not equal to 0 term bi of a number written in the form a + bi a polynomial with one term ____ 44. the number i ____ 45. imaginary number ____ 46. pure imaginary number ____ 47. complex number ____ 48. real part of a complex number ____ 49. imaginary part of a complex number ____ 50. complex conjugates ____ 51. monomial ____ 52. binomial ____ 53. trinomial Problem Set Calculate each power of i. 54. i 48 55. i 361 56. i 55 57. i 1000 11 Name: ________________________ ID: A 58. i −22 59. i −7 Rewrite each expression using i. 60. −72 61. −49 + 62. 38 − −23 −200 + 63. −45 + 21 64. −48 − 12 4 65. 1+ 4− 3 −15 21 − 3 66. − −28 + 67. −75 + 10 121 12 6 80 Simplify each expression. 68. (2 + 5i) − (7 − 9i) 69. −6 + 8i − 1 − 11i + 13 70. −(4i − 1 + 3i) + (6i − 10 + 17) 71. 22i + 13 − (7i + 3 + 12i) + 16i − 25 72. 9 + 3i(7 − 2i) 73. (4 − 5i)(8 + i) 74. −0.5(14i − 6) − 4i(0.75 − 3i) 12 Name: ________________________ ÁÊ 1 75. ÁÁÁÁ i − Ë2 ID: A 3 ˜ˆ˜˜ ÁÊÁÁ 1 3 ˜ˆ˜˜ + − i 4 ˜˜¯ ÁÁË 8 4 ˜˜¯ Determine each product. 76. (3 + i)(3 − i) 77. (4i − 5)(4i + 5) 78. (7 − 2i)(7 + 2i) ÊÁ 1 ˆ˜ ÊÁ 1 ˆ˜ 79. ÁÁÁÁ + 3i ˜˜˜˜ ÁÁÁÁ − 3i ˜˜˜ ˜¯ Ë3 ¯Ë 3 80. (0.1 + 0.6i)(0.1 − 0.6i) È ˘ 81. −2 ÍÍÎ (−i − 8)(−i + 8) ˙˙˚ Identify each expression as a monomial, binomial, or trinomial. Explain your reasoning. 82. 4xi + 7x 83. −3x + 5 − 8xi + 1 84. 6x 2 i + 3x 2 85. 8i − x 3 + 7x 2 i 86. xi − x + i + 2 − 4i 87. −3x 3 i + x 2 + 6x 3 + 9i − 1 Simplify each expression, if possible. 88. (x − 6i) 2 89. (2 + 5xi)(7 − xi) 90. 3xi − 4yi 91. (2xi − 9)(3x + 5i) 92. (x + 4i)(x − 4i)(x + 4i) 13 Name: ________________________ ID: A 93. (3i − 2xi)(3i − 2xi) + (2i − 3xi)(2 − 3xi) For each complex number, write its conjugate. 94. 7 + 2i 95. 3 + 5i 96. 8i 97. −7i 98. 2 − 11i 99. 9 − 4i 100. −13 − 6i 101. −21 + 4i Calculate each quotient. 102. 3 + 4i 5 + 6i 103. 8 + 7i 2+i 104. −6 + 2i 2 − 3i 105. −1 + 5i 1 − 4i 106. 6 − 3i 2−i 107. 4 − 2i −1 + 2i 14 Name: ________________________ ID: A You Can’t Spell “Fundamental Theorem of Algebra” without F-U-N! Quadratics and Complex Numbers Vocabulary Write a definition for each term in your own words. 108. imaginary roots 109. discriminant 110. imaginary zeros 111. degree of a polynomial equation 112. Fundamental Theorem of Algebra 113. double root Problem Set Use the Quadratic Formula to solve an equation of the form f (x) = 0 for each function. 114. f(x) = x 2 − 2x − 3 115. f(x) = x 2 + 4x + 4 116. f(x) = 4x 2 − 9 117. f(x) = −x 2 − 5x − 6 118. f(x) = x 2 + 2x + 10 119. f(x) = −3x 2 − 6x − 11 Use the discriminant to determine whether each function has real or imaginary zeros. 120. f(x) = x 2 + 12x + 35 121. f(x) = −3x + x − 9 122. f(x) = x 2 − 4x + 7 123. f(x) = 9x 2 − 12x + 4 15 Name: ________________________ ID: A 1 124. f(x) = − x 2 + 3x − 8 4 125. f(x) = x 2 + 6x + 9 Use the vertex form of a quadratic equation to determine whether the zeros of each function are real or imaginary. Explain how you know. 126. f(x) = (x − 4) 2 − 2 127. f(x) = −2(x − 1) 2 − 5 128. f(x) = 1 (x − 2) 2 + 7 3 129. f(x) = −3(x − 1) 2 + 5 130. f(x) = −(x − 6) 2 131. f(x) = 3 (x + 4) 2 − 6 4 Factor each function over the set of real or imaginary numbers. Then, identify the type of zeros. 132. k(x) = x 2 − 25 133. n(x) = x 2 − 5x − 14 134. p(x) = −x 2 − 8x − 17 135. g(x) = x 2 + 6x + 10 136. h(x) = −x 2 + 8x − 7 137. m(x) = 1 2 x +8 2 16