Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2.5 Derivatives of Trigonometric Functions 1. Six Trigonometric Functions and Identities: Six trigonometric functions: sin x, cos x, tan x, cot x, sec x, csc x, x is in radians Recall: Functions sin x and cos x are periodic functions with period 2. They are continuous everywhere and graphically they are also differentiable everywhere. Their derivatives exist everywhere. y y 1 0.5 1 0.5 0 0 0 1.25 2.5 3.75 5 6.25 0 1.25 2.5 3.75 5 6.25 x x -0.5 -0.5 -1 -1 y sin x, 0 ≤ x ≤ 2 y cos x, 0 ≤ x ≤ 2 y 1 0.5 0 -5 -2.5 0 2.5 5 x -0.5 -1 — y sin x, -.-. y cos x, − 2 ≤ x ≤ 2 Relations (identities): a. sin x 1 i. tan x cos ii. cot x cos x 1 iii. sec x cos iv. csc x 1 x x tan x sin x sin x So, if we know the derivatives of sin x and cos x, then we can derive the derivatives of tan x, cot x, sec x and csc x using the Quotient Rule. b. More commonly used identities: ii. sec 2 x − tan 2 x 1 i. sin 2 x cos 2 x 1 iii. sin2x 2 sin x cos x iv. cos2x cos 2 x − sin 2 x 2 cos 2 x − 1 1 − 2 sin 2 x c. Sum-difference formulas: i. sina b sina cosb sinb cosa ii. cosa b cosa cosb ∓ sina sinb 1 Values of Trigonometric Functions at Special Angles: x in radians (degrees) sin x cos x tan x cot x csc x sec x 00 ∘ 0 1 0 1 30 ∘ 6 1 2 3 2 1 3 3 2 2 3 45 ∘ 4 1 2 1 1 2 2 60 ∘ 3 90 ∘ 2 3 2 1 2 3 1 3 2 3 2 1 0 0 1 1 2 2. Derivatives of sin x and cos x : d cos x − sin x d sin x cos x and dx dx Two facts are used in derivation: let be an angle in radians lim sin 1 and lim 1 − cos 0 →0 →0 Derivative of sin x : Let fx sin x. Then ′ fx h − fx sinx h − sin x lim lim sin x cos h sinh cos x − sin x f x lim h→0 h→0 h→0 h h h sin xcos h − 1 sin h cos x sin h lim sin x lim cos h − 1 cos x lim h→0 h→0 h→0 h h h sin x 0 cos x 1 cos x In the derivation of the derivative of cos x, you will need to use the identity: cosx h cos x cos h − sin x sin h. 3. Derivatives of tan x, cot x, sec x, and csc x : d csc x − cot x csc x d cot x − csc 2 x, d sec x tan x sec x, d tan x sec 2 x, dx dx dx dx Derivations: Use the derivatives of sin x and cos x and the Quotient Rule d tan x d sin x cos x cos x − sin x− sin x cos 2 x sin 2 x 1 sec 2 x 2 2 2 dx dx cos x cos x cos x cos x 0cos x − 1− sin x sin x d sec x d 1 1 sin2x cos x cos x tan x sec x cos x dx dx cos x cos 2 x Example Let fx sin x and gx cos x. Find f 5 x, f 2003 x, g 5 x and g 2003 x. 2 n f n x g n x 0 sin x cos x 1 cos x − sin x 2 − sin x − cos x 3 − cos x sin x 4 sin x cos x 5 cos x − sin x 2003 − cos x sin x ′ Example Compute f x where 2 b. fx 2 sin x cos x a. fx x sin x c. fx sec 2 x − tan 2 x d. fx 2 sec 2 x a. 2 ′ f x 2x sin x −2x cos x 2x − x 2 cot x csc x sin x sin x b. ′ f x 2cos 2 x sin x− sin x 2cos 2 x − sin 2 x 2 cos2x c. ′ f x d sec 2 x − tan 2 x d 1 0 dx dx d. ′ f x 2 d sec x sec x 2 tan x sec x sec x sec xtan x sec x dx 4 tan x sec 2 x Example Find the equation of the tangent line to the curve y x 2 cos x at a . 3 ′ the equation of the tangent line: y − f f x− 3 3 3 2 2 1 2 f cos 18 3 3 3 3 2 ′ f x 2x cos x x 2 − sin x 2x cos x − x 2 sin x f ′ 3 2 3 cos 3 − 3 2 sin 3 2 the equation of the tangent line: y − 18 3 − 3 − 3 3 2 3 3 2 2 3 2 x− 3