Download Lecture Notes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
2.5 Derivatives of Trigonometric Functions
1. Six Trigonometric Functions and Identities:
Six trigonometric functions: sin x, cos x, tan x, cot x, sec x, csc x, x is in radians
Recall: Functions sin x and cos x are periodic functions with period 2. They are continuous
everywhere and graphically they are also differentiable everywhere. Their derivatives exist
everywhere.
y
y
1
0.5
1
0.5
0
0
0
1.25
2.5
3.75
5
6.25
0
1.25
2.5
3.75
5
6.25
x
x
-0.5
-0.5
-1
-1
y  sin x, 0 ≤ x ≤ 2
y  cos x, 0 ≤ x ≤ 2
y
1
0.5
0
-5
-2.5
0
2.5
5
x
-0.5
-1
— y  sin x, -.-. y  cos x, − 2 ≤ x ≤ 2
Relations (identities):
a.
sin x
1
i. tan x  cos
ii. cot x  cos x  1
iii. sec x  cos
iv. csc x  1
x
x
tan x
sin x
sin x
So, if we know the derivatives of sin x and cos x, then we can derive the derivatives of tan x,
cot x, sec x and csc x using the Quotient Rule.
b. More commonly used identities:
ii. sec 2 x − tan 2 x  1
i. sin 2 x  cos 2 x  1
iii. sin2x  2 sin x cos x
iv. cos2x  cos 2 x − sin 2 x  2 cos 2 x − 1  1 − 2 sin 2 x
c. Sum-difference formulas:
i. sina  b  sina cosb  sinb cosa
ii. cosa  b  cosa cosb ∓ sina sinb
1
Values of Trigonometric Functions at Special Angles:
x in radians (degrees)
sin x
cos x
tan x
cot x
csc x
sec x
00 ∘ 
0
1
0


1
 30 ∘ 
6
1
2
3
2
1
3
3
2
2
3
 45 ∘ 
4
1
2
1
1
2
2
 60 ∘ 
3
 90 ∘ 
2
3
2
1
2
3
1
3
2
3
2
1
0

0
1

1
2
2. Derivatives of sin x and cos x :
d cos x  − sin x
d sin x  cos x
and
dx
dx
Two facts are used in derivation: let  be an angle in radians
lim sin   1 and lim 1 − cos   0
→0
→0


Derivative of sin x : Let fx  sin x. Then
′
fx  h − fx
sinx  h − sin x
 lim
 lim sin x cos h  sinh cos x − sin x
f x  lim
h→0
h→0
h→0
h
h
h
sin xcos h − 1  sin h cos x
sin h
 lim
 sin x lim cos h − 1  cos x lim
h→0
h→0
h→0
h
h
h
 sin x 0  cos x 1  cos x
In the derivation of the derivative of cos x, you will need to use the identity:
cosx  h  cos x cos h − sin x sin h.
3. Derivatives of tan x, cot x, sec x, and csc x :
d csc x  − cot x csc x
d cot x  − csc 2 x,
d sec x  tan x sec x,
d tan x  sec 2 x,
dx
dx
dx
dx
Derivations: Use the derivatives of sin x and cos x and the Quotient Rule
d tan x  d sin x  cos x cos x − sin x− sin x  cos 2 x  sin 2 x 
1
 sec 2 x
2
2
2
dx
dx cos x
cos x
cos x
cos x
0cos x − 1− sin x
sin x
d sec x  d
1
1

 sin2x  cos
x cos x  tan x sec x
cos
x
dx
dx
cos x
cos 2 x
Example Let fx  sin x and gx  cos x. Find f 5 x, f 2003 x, g 5 x and g 2003 x.
2
n
f n x
g n x
0
sin x
cos x
1
cos x
− sin x
2
− sin x
− cos x
3
− cos x
sin x
4
sin x
cos x
5
cos x
− sin x
2003
− cos x
sin x
′
Example Compute f x where
2
b. fx  2 sin x cos x
a. fx  x
sin x
c. fx  sec 2 x − tan 2 x
d. fx  2 sec 2 x
a.
2
′
f x  2x sin x −2x cos x  2x − x 2 cot x csc x
sin x
sin x
b.
′
f x  2cos 2 x  sin x− sin x  2cos 2 x − sin 2 x  2 cos2x
c.
′
f x  d sec 2 x − tan 2 x  d 1  0
dx
dx
d.
′
f x  2 d sec x sec x  2 tan x sec x sec x  sec xtan x sec x
dx
 4 tan x sec 2 x
Example Find the equation of the tangent line to the curve y  x 2 cos x at a   .
3
′ 


the equation of the tangent line: y − f
f
x−
3
3
3
2
2
1  2
f   
cos   
18
3
3
3
3
2
′
f x  2x cos x  x 2 − sin x  2x cos x − x 2 sin x
f
′

3
 2 
3
cos 
3
−

3
2
sin 
3
2
the equation of the tangent line: y −  
18
3
 −
3
  −
3

3
2

3
3
2
2
3
2
x− 
3
Related documents