Download Lesson 4.6 Applying the Exponent Laws Exercises (pages 241–243

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lesson 4.6
Applying the Exponent Laws
A
3. Use the product of powers law:
When the bases are the same, add the exponents.
a) x3  x 4  x3  4
 x7
b) a 2  a 5  a 2   5
 a 3
1
 3
a
Write with a positive exponent.
c) b 3  b5  b 3  5
 b2
d) m2  m 3  m 2   3
 m1
1

m
Write with a positive exponent.
4. a) 0.52  0.53
Use the product of powers law:
When the bases are the same, add the exponents.
0.52  0.53  0.52  3
 0.55
b) 0.52  0.53
Use the product of powers law:
When the bases are the same, add the exponents.
0.52  0.53  0.52  ( 3)
 0.51 Write with a positive exponent.
=
1
0.5
Exercises (pages 241–243)
c)
0.52
0.53
Use the quotient of powers law:
When the bases are the same, subtract the exponents.
0.52
 0.52  3
0.53
 0.51 Write with a positive exponent.

d)
1
0.5
0.52
0.53
Use the quotient of powers law:
When the bases are the same, subtract the exponents.
0.52
 0.52  ( 3)
3
0.5
 0.55
5. Use the quotient of powers law:
When the bases are the same, subtract the exponents.
x4
 x4  2
a)
x2
 x2
b)
x2
 x2  5
5
x
 x 3 Write with a positive exponent.
=
c)
1
x3
n 6  n5  n 6  5
 n1
n
d)
a2
 a2  6
a6
 a 4 Write with a positive exponent.
=
1
a4
6. Use the power of a power law: multiply the exponents
a)
n 
2 3
 n(2)(3)
 n6
b)
z 
2 3
 z (2)( 3)
 z 6
1
z6
=
c)
n 
4 3
Write with a positive exponent.
 n( 4)( 3)
 n12
d)
c 
2 2
 c ( 2)(2)
 c 4
Write with a positive exponent.
1
c4
=
7. Use the power of a power law: multiply the exponents
4
(3)(4)
 3 3 
 3
a)      
5
 5  
12
3
 
5
 3 3 
b)   
 5  
4
 3
 
5
(3)( 4)
3
 
5
12
Write with a positive exponent.
12
5
= 
3
c)
 3 3 
  
 5  
4
 3
 
5
( 3)( 4)
12
3
 
5
 3 3 
d)    
 5  
4
 3
  
 5
( 3)( 4)
12
 3
  
 5
8. a) Use the power of a quotient law.
2
a2
a

 
b2
b
b) Use the power of a quotient law.
n2 

 n2 
  
m3
m
3
3
Use the power of a power law.
n(2)(3)
m3
n6
 3
m

 c2 
 2
d 
4
 d2 
  2
c 
d 

c 
4
Writing with a positive exponent
2 4
2 4
d (2)(4)
c (2)(4)
d8
 8
c

c)
Using the power of a quotient law
Using the power of a power law
d) Use the power of a quotient law.
 2b 
 2b 
  
2
 5c 
 5c 
2
2
22 b 2
52 c 2
4b 2

25c 2

Use the power of a product law.
e)
 ab 
2
 a 2b 2
Using the power of a product law
 n m   n   m
2
3
2 3
3
Using the power of a product law
 n(2)(3) m3
6
=nm
f)
c d 
3
2 4
Using the power of a power law
3
  c3    d 2 
4
4
Using the power of a product law
 c (3)( 4) d (2)( 4)
Using the power of a power law
= c 12 d 8
Write with positive exponents.
=
g)
1
c d8
12
 xy    x    y 
1 3
1 3
3
Using the power of a product law
 x3 y ( 1)(3)
Using the power of a power law
= x3 y 3
Write with a positive exponent.
3
=
h)
B
9. a)
x
y3
x 3  x 4  x 3  4
Using the product of powers law
 x1
x
b)
a 4  a 1  a 4  ( 1)
a

c)
5
Write with a positive exponent.
1
a5
b4  b3  b2  b4  ( 3)  2
b
d)
Using the product of powers law
Using the product of powers law
3
m8  m2  m6  m8  ( 2)  ( 6)
m
1
0
Using the product of powers law
e)
x 5
 x 5  2
x2
 x 7

f)
g)
1
x7
Using the quotient of powers law
b 8
 b 8  ( 3)
b 3
 b 5
Using the quotient of powers law
Write with a positive exponent.
1
b5
t 4
 t 4  ( 4)
t 4
 t0
=1
3
10. a)
Write with a positive exponent.
s5
 s 5  ( 5)
s 5
 s10
=
h)
Using the quotient of powers law
1
Using the quotient of powers law
3
1.5 2  1.5 2  1.5 2
 1.5

1
2
Using the product of powers law
4
2
 1.52
 2.25
3
 3 4
b)  
4
5
3
 3 4  3 4
   
4
4
8
 3 4
 
4
3
 
4
9

16
2

5
4
Using the product of powers law
1
c)
5
1
 0.6  3   0.6  3   0.6  3
  0.6 
6
3
  0.6 
2

5
3
Using the product of powers law
 0.36
4
 4 3
d)  
5
4
 
5

4
3
4
 4 3
 
5
4
 
5
1
e)
0.6
0.6
1
2
3
2
1
 0.6 2
 0.6


3
2
 4
  
 3
Using the product of powers law
0
Using the quotient of powers law
2
2
 0.61
Write with a positive exponent.
1
0.6
1

6
10
10

6
5

3

f)
2
 3 3
2  1
  
 
 8     3 3  3


1

8
 3 3 
 
 8
3
 3 3
  
 8
1
 3
  
 8
3

8
Using the quotient of powers law.
g)
5
5
4
0.49 2
2

0.49
4
0.49
5


3
2
 0.49 2
 0.49
8
2
Write with a positive exponent.
1


Using the quotient of powers law
3
0.49 2
1

0.49

3
1
0.73
1

0.343
1

343
1000
1000

343

5
h)
0.027 3
0.027
4
3
5
 0.027 3

4
3
Using the quotient of powers law
1
 0.027 3
 3 0.027
 0.3, or
11. a)
x
1
y 2 
3
3
10
  x 1    y 2 
3
3
= x ( 1)( 3)  y ( 2)( 3)
= x3  y 6
 x3 y 6
Using the power of a product law
Using the power of a power law
b)
c)
 2a

2 2 2
b
 4m n 
2
3 3
  21    a 2    b 2 
2
2
2
Using the power of a product law
= 2(1)( 2)  a ( 2)( 2)  b(2)( 2)
Using the power of a power law
= 22  a 4  b 4
Write with positive exponents.
4

a
2  b4

a4
4b 4
2
  41    m 2    n3 
3
3
3
= 4(1)( 3)  m(2)( 3)  n(3)( 3)
3
6
=4 m n
1
 3
4  m6  n9

9
Using the power of a product law
Using the power of a power law
Write with positive exponents.
1
64m6 n9
d)
 3 2 3 
 m n 
2

4
4
 31 
4
4
     m 2    n 3 
2 
3
= 
2
Using the power of a product law
(1)( 4)
 m( 2)( 4)  n( 3)( 4)
Using the power of a power law
4
3
=    m8  n12
2
4
2
    m8  n12
3
16

 m8  n12
81
16m8 n12

81
Write with a positive exponent.
12. The volume of a cone with base radius r and height h is given by the formula:
1
V  πr 2 h
3
The cone has equal height and radius.
So, substitute: r = h
1
V  πh 2 h
3
1
 πh 2 h1
Use the product of powers law.
3
1
 πh 2  1
3
1 3
 πh
3
Substitute V = 1234, then solve for h.
1
1234  πh3
Multiply each side by 3.
3
1

3 1234   3  πh3 
3

3
3702  πh
Divide each side by π.
3702 πh3

π
π
3702
 h3
π
To solve for h, take the cube root of each side
by raising each side to the one-third power.
1
3
 3702 
3 3

  h 
 π 
1
1
Use the power of a power law.
 3702  3
Use a calculator.

 h
 π 
h  10.5623...
The height of the cone is approximately 10.6 cm.
4
13. The volume, V, of a sphere with radius r is given by the formula: V  πr 3
3
Substitute V = 375, then solve for r.
4
375  πr 3
Multiply each side by 3.
3
4

3  375   3  πr 3 
3

3
1125  4πr
Divide each side by 4π.
1125 4πr 3

4π
4π
1125
 r3
4π
To solve for r , take the cube root of each side
by raising each side to the one-third power.
1
3
 1125 
3 3

  r 
 4π 
1
Use the power of a power law.
1
 1125  3

 r
 4π 
r  4.4735...
Use a calculator.
The surface area, SA, of a sphere with radius r is given by the formula:
Substitute: r  4.4735...
SA  4πr 2
 4π(4.4735...) 2
 251.4808...
The surface area of the sphere is approximately 251 square feet.
a b 
a b
2 1 2
14. a)
3
3

a 2( 2)  b( 1)( 2)
a ( 3)(3)  b(1)(3)
Using the power of a power law
=
a 4  b 2
a 9  b3
Use the quotient of powers law.
 a 4  ( 9)  b 2  3
 a 5  b 1

5
a
b
Write with a positive exponent.
b)
  c 3 d 1 


 c2 d 


2
 c ( 3)( 1)  d (1)( 1) 


c2d


 c3  d 1 
= 2

 cd 
Using the power of a power law inside the large brackets
2
Use the quotient of powers law.
  c3  2  d 1  1 
  c1  d 2 
2
2
2
Use the power of a power law.
 c1( 2)  d ( 2)( 2)
 c 2 d 4
Write with a positive exponent.
4
=
d
c2
15. a) Simplify first.
 a3b2  a 2b3   a3  b2  a 2  b3
 a 3  a 2  b 2  b3
=a
32
b
Use the product of powers law.
23
 a 5b5
Substitute: a = –2, b = 1
a 5b5  (2)5 1
5
 (32)(1)
 32
b) Simplify first.
 a 1b2  a 2b3   a1  b2  a2  b3
 a 1  a 2  b 2  b 3
=a
1  ( 2)
3 5
a b
1
ab
Substitute: a = –2, b = 1
1
1

3 5
ab
(2)3 (1)5
1

(8)(1)
1

8
=
c) Simplify first.
3 5
b
Use the product of powers law.
2  ( 3)
Write with positive exponents.
a 4b5
 a 4  1  b5  3
ab3
= a 5  b 2
Using the quotient of powers law
Write with a positive exponent.
2
b
a5
Substitute: a = –2, b = 1
b2
12

a 5  2 5
=

1
32
d) Simplify first.
 a 7 b7 
 9 10 
a b 
5
  a 7  ( 9)  b7  10 
=  a 2  b 3 
 a2 
= 3
b 
5
 b3 
= 2
a 
b3(5)
= 2(5)
a
b15
 10
a
5
5
5
Using the quotient of powers law inside the brackets
Write the expression inside the brackets with a positive exponent.
Write with a positive exponent.
Use the power of a power law.
Substitute: a = –2, b = 1
b15
115

10
10
a
 2 

2
1
1024
4
2
16. a) m 3  m 3  m 3
=m
6
3
 m2

4
3
Using the product of powers law
b) x

3
2
x

1
4

x
=x
x

3  1
  
2  4
Using the quotient of powers law
6  1
   
4  4

5
4
Write with a positive exponent.
1
5
x4
c)
3
9a 4b 4
2
3a b
1
4
3
9 a 4 b 4


 1
3 a2
b4
Use the quotient of powers law.
3
=  3  a 4  2  b 4

1
4
2
=  3  a 6  b 4
1
  3  a 6  b 2

Write with a positive exponent.
1
2
3b
a6
d)
1
1
 64c 6  3 
3

   64  1  1  c 6 
1

 9  12 


a9
b 2
ab 


Simplify inside the brackets first.
1
1

3
=  64  a 9  b 2  c 6 


1
3
 (64)  a
1
9 
 3
1
3
b
 1  1 
  
 2  3 
Use the power of a power law.
c
1
6 
 3
1
6
 (64)  a 3  b  c 2
1
  4  a 3  b 6  c 2
1
4b 6 c 2
=
a3
Write with a positive exponent.
17. a) In the second line, the exponents were multiplied instead of added.
A correct solution is:
1
 1 
 x2 y 3   x 2 y 1   x2  x 2  y 3  y 1 Use the product of powers law.


x
2
1
2
4
1
2
 x2

 y 3  ( 1)
 y 3  ( 1)
5
2
 x y 4
Write with a positive exponent.
5
2
=
x
y4
b) In the first line, –5 was multiplied by –2 instead of being raised to the power –2.
A correct solution is:
 5a 2 


 12 
 b 
2
 5

b



2
 a 2( 2)
1
   2 
2
 5
2
 a 4
b 1
Using the power of a power law
Write with positive exponents.
b1
 5
2
 a4
b
25 a 4
18. I record the volume of water in the measuring cylinder, in millilitres. Then I carefully place the
marble in the cylinder. The water level rises; this is the total volume of the water and the marble. I
record this volume. I subtract the volume of the water alone from the total volume of the water and
the marble to determine the volume of the marble in millilitres. Since
1 mL = 1 cm3, I can write the volume of the marble in cubic centimetres.
4
The volume, V, of a sphere with radius r is given by the formula: V  πr 3
3
I substitute the volume of the marble in cubic centimetres for V.
I then multiply both sides of the equation by 3, then divide both sides by 4π . To solve for r,
1
I raise each side to the one-third power. I then use the power of a power law to write  r 3  3
as r. Once I have determined r, I multiply the radius by 2 to get the diameter of the marble.
19. a) There are two errors in the first line: the quotient of powers law was used before the power of a
power law, and when using the quotient of powers law, the powers outside the brackets were
subtracted. There is an error in the second line: when using the power of a power law, the product
of 5 and –6 should have been –30.
A correct solution is:
m
m
3
2
 n2 
n
4

3 2

m( 3)( 4)  n 2( 4)
m 2(2)  n 3(2)
Using the power of a power law

m12  n 8
m 4  n 6
Use the quotient of powers law.
= m12  4  n 8  ( 6)
 m8 n 2

Write with a positive exponent.
m8
n2
b) There is an error in the first line: when using the power of a power law, the exponents
added when they should have been multiplied.
A correct solution is:
1
 12  23  2
r  s 


1
  

 


 
 1 1 
  
   
    1
   1
  r 4  s 2   r  2  2   s  2  2   r  4   s  2 


1
1
1
3
 r4  s
r
1 1

4 4
s
1
 r4  s
3 2

4 4
1

5
4
1
2
5
s4
1

1
2
1
Using the power of a power law
Use the product of powers law.
3 1
 
4 2

 r2  s
r
3
4
2
4
r s


1
were
Write with a positive exponent.
20. Width, in metres, of a piece of An paper: 2

2n  1
4

2n  1
Length, in metres, of a piece of An paper: 2 4
a) i) To determine the dimensions of a piece of A3 paper, substitute: n = 3
Width: 2

2n  1
4
2
2


2(3)  1
4

7
4
Write with a positive exponent.
1
7
24
This is the width in metres. Since 1 m = 1000 mm, to write the width in millimetres, multiply
by 1000.
1
1000
 1000 
7
7
24
24
1000
So, the width of the paper is 7 mm.
24
1000
Use a calculator to evaluate:
= 297.3017…
7
4
2
The width of a piece of A3 paper is about 297 mm.
Length: 2

2n  1
4
2
2


2(3)  1
4

5
4
Write with a positive exponent.
1
5
24
This is the length in metres. Since 1 m = 1000 mm, to write the length in millimetres, multiply
by 1000.
1
1000
 1000 
5
5
24
24
1000
mm.
So, the length of the paper is
5
4
2
1000
Use a calculator to evaluate:
= 420.4482…
5
4
2
The length of a piece of A3 paper is about 420 mm.
1000
1000
A piece of A3 paper has dimensions 5 mm by 7 mm, or 297 mm by 420 mm.
24
24
ii) To determine the dimensions of a piece of A4 paper, substitute: n = 4
Width: 2

2n  1
4
2
2

2(4)  1
4

9
4
Write with a positive exponent.
1

9
24
This is the width in metres. To write the width in millimetres, multiply by 1000.
1
1000
 1000 
9
9
24
24
1000
So, the width of the paper is 9 mm.
24
1000
Use a calculator to evaluate:
= 210.2241…
9
4
2
The width of a piece of A4 paper is about 210 mm.
Length: 2

2n  1
4
2
2

2(4)  1
4

7
4
Write with a positive exponent.
1

7
24
From part i,
1000
7
4
= 297.3017…
2
The length of a piece of A4 paper is about 297 mm.
1000
1000
A piece of A4 paper has dimensions 7 mm by 9 mm, or 210 mm by 297 mm.
24
24
iii) To determine the dimensions of a piece of A5 paper, substitute: n = 5
Width: 2

2n  1
4
2
2


2(5)  1
4

11
4
Write with a positive exponent.
1
11
24
This is the width in metres. To write the width in millimetres, multiply by 1000.
1
11
4
 1000 
1000
11
24
2
So, the width of the paper is
Use a calculator to evaluate:
1000
11
4
2
1000
11
4
mm.
= 148.6508…
2
The width of a piece of A5 paper is about 149 mm.
Length: 2

2n  1
4
2
2


2(5)  1
4

9
4
Write with a positive exponent.
1
9
24
1000
From part ii, 9 = 210.2241…
24
The length of a piece of A5 paper is about 210 mm.
1000
1000
A piece of A5 paper has dimensions 9 mm by 11 mm, or 149 mm by 210 mm.
24
24
b) i) The paper is folded along a line perpendicular to its length.
So, one dimension of a folded piece of A3 paper, in millimetres,
half the original length:
1000 1
1000
  5
5
2
24
2 4  21
1000
 5
1
24
1000
 5 4

24 4
1000
 9
24
is one-
The other dimension is the original width:
1000
2
7
4
So, a folded piece of A3 paper has dimensions
mm
1000
2
7
4
mm by
1000
2
9
4
mm.
ii) The paper is folded along a line perpendicular to its length.
So, one dimension of a folded piece of A4 paper, in millimetres,
is one-half the original length:
1000 1
1000
  7
7
2
24
2 4  21
1000
 7
1
24
1000
 7 4

24 4
1000
 11
24
1000
The other dimension is the original width: 9 mm
24
1000
1000
So, a folded piece of A4 paper has dimensions 9 mm by 11 mm.
24
24
iii) The paper is folded along a line perpendicular to its length.
So, one dimension of a folded piece of A5 paper, in millimetres,
is one-half the original length:
1000 1
1000
  9
9
2
24
2 4  21
1000
 9
1
24
1000
 9 4

24 4
1000
 13
24
1000
The other dimension is the original width: 11 mm
24
1000
1000
So, a folded piece of A5 paper has dimensions 11 mm by 13 mm.
24
24
c) I noticed that a piece of A4 paper has the same dimensions as a folded piece of A3 paper, and a
piece of A5 paper has the same dimensions as a folded piece of A4 paper.
C
21. a)
4
1
 a  3 4  b1 4   

 a 3b   c5 
c5 1






 2   4 3 
2 4 
4 1
3 1 





c
b
 c  a b 

 a

 a12  b 4   c 5 
 
   4 3 
8
 c
 a b 
 a12b 4 c8  a 4b 3c 5
12  4 4  3
=a
b
c
Using the power of a power law
Rewrite without using fractions.
Use the product of powers law.
85
 a16b 7 c3
Write with a positive exponent.
16 3
=
b)
 2a b c 
 4a bc 
1 4 3 2
2
4 2

a c
b7
22  a ( 1) 2  b 4 2   c ( 3) 2 
42  a 2 2  b 2  c ( 4) 2
Using the power of a power law

22  a 2  b 8  c 6
16  a 4  b 2  c 8
Rewrite 16 as a power of 2.

22  a 2  b 8  c 6
24  a 4  b 2  c 8
Use the quotient of powers law.
 22  4  a 2  4  b 8  2  c 6   8
 26  a 2  b 10  c14
14
c
2 a 2 b10
c14

64a 2b10

6
Write with positive exponents.
22. a)
2
2
1
 12 23 
 2
 2
3
2
x
y

x

y




4
Using the power of a power law
2
Substitute: x = a 2 , y  a 3
 x  y3
4
 a 2
 2 3
  a3 
 
Use the power of a power law.
2 4

3
 a 2  a 3
8
 a 2  a 9
a
a
2 
8
9

18 8

9 9

10
a 9
1
 10
a9
Use the product of powers law.
Write with a positive exponent.
b)

x  y

3
4
1

2
 3 
  x4 
  1 
  y2 


3
3

x
y
Rewriting as a fraction
3
(3)
4
Using the power of a power law
 1
  3
 2
9

2
x4
y

Substitute: x = a 2 , y  a 3
3
2
9
2 4

a 
 
a 
 
2
3

a
 2 

Use the power of a power law.
3
2
9
4
2  3
  
 2
a3

9
a 2
 1
a
a
a
a


9
  1
2

9 2

2 2

7
2
Use the quotient of powers law.
Write with a positive exponent.
1
7
a2
23. a) The product of powers law is: xm  xn  x m  n
3
So, for the product to be x 2 , I need to find two exponents whose sum is
For example:
1
1
x 2  x1  x 2
3
 x2

2
2
1
5
1
x4  x4  x4
6
 x4
3
 x2

5
4
11
1
11
x 8  x8  x 8

12
 x8
3
 x2
1
8
3
.
2
b) The quotient of powers law is: xm  xn  xm  n
3
So, for the quotient to be x 2 , I need to find two exponents whose difference is
For example:
1
x2  x 2  x
2
1
2
5
5
1
5

x 2  x1  x 2
3
 x2
 x2
7
7
2
7

x 2  x2  x 2
2
2
 x2
3
4
2
3
 x2
 x2
c) The power of a power law is:  x m   x mn
n
3
So, for the result to be x 2 , I need to find two exponents whose product is
For example:
x
1
3 2

x
1
3 
2
3
 x2
9
  
 13  2
  
 3  2 
x

x
 
 
1
x
x
9
1
 x9  6  x
1
9 
6
9
9
6
 x6
3
2
 x2
3
3
.
2
3
.
2
1
1
1
3  1 2
AC AD
 2 2
 1 2
24. In

, substitute AB =   , AC =   , AE =   , then solve for AD.
2 3
AB AE
3
3
1
3  1 2
 
2 3
2
 
3
1
2
1

 3  1 2
 
1  2 3
  
1
 3    2 2
 3
  
1
2
1
1

 1 2
Multiply both sides by   .
3
AD
1
 1 2
 
 3



1 
  1  2  AD
  
1
  3    1 2

  3

 







1
3  1 2  1 2
   
2 3  3
1
 AD
Use the product of powers law.
 2 2
 
3
1
3  1 2
 
2 3

1
2
 AD
1
2
2
 
3
31
 
2 3
 AD
1
2
2
 
3
1
2  AD
2
 
3
 1  2 
  
 2  3 

1
2
1
2
1
 AD
 1  3  2
    AD
 2  2 
Use a calculator to evaluate:
1
 1  3  2
AD    
 2  2 
 0.6123...
Use a negative exponent to move the denominator to the numerator.
Write with a positive exponent.
1
 1  3  2
The length of AD is    cm, or approximately 0.6 cm.
 2  2 
Related documents