Download Review 0

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Professor Readdy
Math 214
Spring 2017
Review
(1) Complete the square: Complete the squares of following polynomials. x2 + 2x − 3, x2 − 4x + 13
and 2s2 − 2s + 5.
(2) Finding rational roots: 2x3 + 3x2 − x − 1 = 0, 3x4 − x3 + 7x2 + 5 = 0, x5 + 9/2 · x4 − 11/2 ·
x3 − 19x2 − 25/2 · x − 15/2 = 0.
(3) Solving quadratic equations: x2 + 2x − 35 = 0, 2x2 + 5x − 12 = 0, x2 − 3x + 29/2 = 0.
(4) Factor polynomials: 2x2 + 7x − 15, x3 + 5x2 + 7x + 3, x4 − 5x3 + 6x2 + 4x − 8.
(5) Partial fractions: (x+5)/(x2 −2x−3), (7x2 −7x−2)/(x3 −x2 −x+1), (x3 −8x+11)/(x2 +2x−3).
p
(6) Simplify expressions: e4·ln(x) , ln(xy) − ln(x/y), 1 − cos2 (x), sin(x − π/6) + cos(x + π/3),
cos(x) − sin2 (x) cos(x), sin(2x)/ cos(x), ln(5ex ).
(7) Recursions:
– Solve an = 5an−1 with the initial condition a0 = 4.
– Solve bn = 3bn−2 with the initial conditions b0 = 4 and b1 = −1.
– Solve cn = 2n2 · cn−1 with the initial condition c0 = 5.
√
(8) Derivatives: Take the derivatives of 1/ x, (x2 + 2x + 3)/(x − 1), (x − 3)/(x2 − x − 6), 10x ,
√
2
tan(x), arctan(x), sin(5x2 ), ex , cos( x), sec(x) and 2x sin(x) + (2 − x2 ) · cos(x).
Z
Z
Z
Z
Z
dt
dx
dt
5/2
−2t
√
(9) Basic integrals: Compute x dx,
, e
dt,
,
.
2
2
1
+
x
t
1−t
Z
Z
Z
√
x
x · cos(x2 )
p
(10) Integration by substitution: Compute
dx,
x
·
x
−
1
dx,
dx.
x2 + 4
sin(x2 )
(11) The elementary differential equation: Find the function y(t) such that y 0 = −2 · y and
y(0) = e.
(12) Definite integration: What is wrong with the argument
Z 5
5
dx
= ln |x + 4| −5 = ln(9) − ln(1) = ln(9)?
−5 x + 4
(13) Taylor series:
– Find the coefficient of xn in the Taylor series of e5x .
– Find the coefficient of xn in the Taylor series of (1 + x)α .
– Find the coefficient of xn in the Taylor series of 1/(1 + 2x).
– Find the coefficient of xn in the Taylor series of (11x − 3)/(1 − 5x + 6x2 ).
– Find the coefficient of x4 in the Taylor series of ex+x
2 /2
.
– Find the coefficient of x6 in the Taylor series of cos(2x).
– Find the coefficient of x8 in the Taylor series of sin(x + x3 ).
(14) Taylor series and limits: Find the coefficients of 1, x, x2 and x3 in the Taylor series of
f (x) = ex − sin(x) − cos(x) − x2 . Use this to compute limx−→0 f (x)/x3 .
Z
Z
Z
2 x
(15) Integration by parts: Compute x e dx, 9x cos(3x) dx, arctan(x) dx.
Z
x+5
dx,
2
x − 2x − 3
Z
x+4
(16) Integration of rational functions: Compute
dx,
2
x + 4x + 13
Z
2x5 − 3x4 − 6x3 + 9x2 + 6x − 4
dx.
x4 − 2x2 + 1
Z 3
Z ∞
Z π
Z 4
Z 2p
dx
x2
2 dx,
(17) Definite integrals: Compute
x2 ln(x) dx,
4
−
x
x sin(x) dx,
,
dx,
x2 /9 + 1 0 x3 + 1
1
0
0
0
Z π
Z π/2
p
5
cos (x) dx,
cos(x) sin(x) dx.
0
0
(18) Partial derivatives: For f = x2 yexy compute
∂f ∂f ∂ 2 f
∂2f
∂x , ∂y , ∂x2 , ∂x∂y
and
∂2f
∂y∂x .
2
(19) Chain rule: View y and z as functions of the variable x and compute the derivative of y · ex·y ,
x2 /z and sin(x · y 2 · z 3 ).
Solutions: (1) (x + 1)2 − 4, (x − 2)2 + 9, 2((s − 1/2)2 + 9/4). (2) x = −1/2, none, x = −1/2, 3.
(3) x = 5, −7, x = 3/2, −4 and x = 3/2±7/2·i. (4) (x+5)·(2x−3), (x+3)·(x+1)2 , (x−2)3 ·(x+1).
(5) 2/(x−3)−1/(x+1), 4/(x−1)−1/(x−1)2 +3/(x+1), x−2+1/(x−1)−2/(x+3). (6) x4 , 2 ln(y),
| sin(x)|, 0, cos3 (x), 2 sin(x), x + ln(5). (7) an = 4 · 5n , b2k = 4 · 3k , b2k+1 = −3k , cn = 5 · 2n · (n!)2 .
If you can not do problems (1) through (7), please review/retake Precalculus. (8) −1/2 · x−3/2 ,
√
√
2
1 − 6/(x − 1)2 , −1/(x + 2)2 , ln(10) · 10x , sec2 (x), 1/(x2 + 1), 10x · cos(5x2 ), 2x · ex , − sin( x)/(2 x),
sec(x) · tan(x), x2 · sin(x). (9) 2/7 · x7/2 + C, arcsin(x) +pC, −1/2 · e2t + C, arctan(x) + C and ln |t| + C.
(10) 1/2 · ln(x + 4) + C, 2/15 · (3x + 2) · (x − 1)3/2 + C, sin(x2 ) + C. (11) e1−2t . (12) The integrand
has a pole at x = −4. If you can not do problems
(8) through (11), please review/retake Calculus 1.
(13) 5n /n!, α · (α − 1) · · · (α − n + 1)/n! = αn , (−2)n , 2 · 3n − 5 · 2n , 5/12, −26 /6! and 0 since it is
an odd function. (14) f (x) = x3 /3 + O(x4 ) and hence the limit is 1/3. (15) (x2 − 2x + 2) · ex + C,
cos(3x) + 3x sin(3x) + C, x arctan(x) − 1/2 ln(x2 + 1) + C. (16) 2 ln(x − 3) − ln(x + 1) + C, 1/2 · ln(x2 +
4x + 13) + 2/3 · arctan(x/3 + 2/3) + C, x2 − 3x − 1/(x − 1) − 2 ln(x + 1) + C. (17) 9 ln(3) − 26/9,
3π/2, ln(65)/3, π, π, 0, 2/3. If you can not do problems (13) through (17), please review/retake
Calculus 2. (18) (x2 y 2 + 2xy) · exy , (x3 y + x2 ) · exy , (x2 y 3 + 4xy 2 + 2y) · exy , (x3 y 2 + 4x2 y + 2x) · exy
2
dy
dy
dy
dz
dz
+ 2xy 2 dx
) · exy , (2xz − x2 dx
)/z 2 , (y 2 z 3 + 2xyz 3 dx
+ 3xy 2 z 2 dx
) · cos(xy 2 z 3 ). If you can
(19) (y 3 + dx
not do problems (18) and (19) please review/retake Calculus 3.
Related documents