Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Mathematics B (Elec Eng): revision exercises 1 1 1 3 1/3 , (iii) (1 − x ) (8 − x3 )1/3 2. Find the Maclaurin series of (i) cos x sin 2x, (ii) x ln(1 + x3 ), (iii) sec x, as far as the x4 term 1. Expand (i) (2x − y)4 , (ii) 3. Use L’Hopital’s rule to find the limits ex−1 − 1 x→1 ln x 8x2 x→0 cos x − 1 lim 1 − sin θ θ→π/2 1 + cos 2θ lim lim lim x→π sin2 x 1 + cos x 4. Find the exact values of (i) sinh(ln 3), (ii) cosh(− ln 2), (iii) tanh(2 ln 5). 5. If sinh x = −2 find the values of cosh x, tanh x, sech x, cosech x and coth x. 6. Show that cosh 21 x = q 1 2 (1 + cosh x). 7. Evaluate Z (i) √ dx , 1 + 2x2 Z (ii) p dx , (x − 1)(x + 9) Z e (iii) 1 dx x 1 + (ln x)2 p Answers: 1. (i) (2x − y)4 = 16x4 − 32x3 y + 24x2 y 2 − 8xy 3 + y 4 1 9 (ii) = 1 + 13 x3 + 29 x6 + 14 81 x + · · · (1 − x3 )1/3 1 1 3 1 6 7 (iii) = 12 + 48 x + 576 x + 41472 x9 + · · ·. (8 − x3 )1/3 5 2. (i) cos x sin 2x = 2x − 73 x3 + 61 60 x + · · · 1 7 1 10 3 4 (ii) x ln(1 + x ) = x − 2 x + 3 x + · · · 5 4 (iii) sec x = 1 + 21 x2 + 24 x + ··· 1 3. 1, −16, 4 , 2 4. (i) 43 , (ii) 54 , (iii) 312 313 . √ √ √ √ 5. cosh x = 5, tanh x = −2/ 5, sech x = 1/ 5, cosech x = −1/2, coth x = − 5/2. √ 7. (i) √12 sinh−1 ( 2x), (ii) cosh−1 ((x + 4)/5), (iii) sinh−1 (1). Potentially useful information from formulae booklet n(n − 1) 2 n(n − 1)(n − 2) 3 x + x + ··· 2! 3! (finite series if n is a positive integer or zero. If not, infinite series convergent when |x| < 1). (1 + x)n = 1 + nx + 3 2 ex = 1 + x + x2! + x3! + · · · 2 3 ln(1 + x) = x − x2 + x3 − · · · 5 3 sin x = x − x3! + x5! − · · · 2 4 cos x = 1 − x2! + x4! − · · · arctan x = tan−1 x = x − d x sinh−1 dx a −1<x≤1 x3 3 + x5 5 − ··· −1≤x≤1 1 d x 1 d x a , cosh−1 =√ , tanh−1 = 2 2 2 2 2 dx a dx a a − x2 a +x x −a Note: the formulae booklet may use the notation arcsinh instead of sinh−1 ; similarly for the other trigonometric and hyperbolic functions. =√