Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Test 3 Practice Problems Expand the expression. 1) log 6 xy 2) log 4 11) 32 = 9 3 12) e1/3 = e x 4 y7 5 Write an equivalent expression in exponential form. 13) log 16 = 2 4 Use the properties of logarithms to rewrite the logarithm if possible. Assume that all variables represent positive real numbers. 5 m 3) log 4 n 14) log 1 = -2 3 9 15) ln e4 = 4 8 4) log 4 11 16) log Write the expression as one logarithm. 5) log 3 3 - log 3 y 6) log 3 5= 1 2 Solve the equation. 17) 36x = 6 x + log x 4 - log x 3 18) 7) 4 log (x + 3) - 5 log (x 2 + 4) + 25 1 log y 3 1 x =4 2 19) 4(9 - 3x) = 64 Graph the function. 8) f(x) = log2 x 20) e4x - 1 = (e 2 )-x Graph the exponential function. 21) f(x) = 2x Write in logarithmic form. 9) 72 = 49 Use the change-of-base rule to find the logarithm to four decimal places. 22) log 2 3 1 10) 5-3 = 125 1 23) log 5 11.08 Solve the system of linear equations. 35) x + 3y = -9 -2x + 3y = -18 Use common or natural logarithms to solve the exponential equation symbolically. 24) 5x = 125 1 25 A) x = ln C) x = ln 25 25) 2(1 + 2x) = 8 log 8 -2 A) x = log 2 C) x = 2 + 26) 3(x - 1) = 11 A) x = 1 + B) x = - log 2 log 8 B) x = Solve the system of nonlinear equations. 36) x2 + y2 = 113 ln 125 ln 5 x -y =1 D) x = ln 15 B) x = log 8 1 2 log 2 2 D) x = log 2 -2 log 8 37) 38) x 2 - 3y2 = 1 4x 2 + 3y2 = 19 Solve the system of linear equations. 39) 4x - 5y = -20 -2x - 3y = -12 log 3 log 11 State the dimensions of the matrix. 40) -9 2 4 -8 3 1 log 11 -1 log 3 C) x = log 11 +1 log 3 D) x = log 3 -1 log 11 xy = 30 x + y = -11 Find the values of the variables. 41) x+3 y+4 = 6 2 7 -4 7k Perform the matrix operation. 42) Let A = -3 6 . Find 2A. 02 Solve the equation. 27) log 3 27 = x 28) log x 100 = - 2 43) Let A = 1 3 24 29) log 5 x = 2 30) log 2 44) 1 =x 4 -3 -8 6 9 + and B = 5 -3 -9 -1 04 -1 6 . Find 2A + B. = If possible, find the matrix product of AB. 45) A = -2 3 ; B = -2 0 22 -1 5 Solve the logarithmic equation symbolically. 31) 7 ln x = 10 32) ln x + ln x 5 = 6 46) A = -1 3 ; B = 0 -2 4 52 1 -3 2 33) ln 6x + ln 2x = ln 13 34) log x 9 = 7 + 3 log x 2 47) A = [-1 2 5]; B = 7 0 -3 2 9 -4 ; B = 48) A = -8 2 3 -7 6 5 Find the specified minor and cofactor for the matrix A. -2 5 3 49) M11 and A11 if A = 4 2 -2 1 7 4 Find det A using the method of cofactors. 2 1 -1 50) A = 3 -2 -4 3 5 4 6-5 1 51) A = 0 1 6 0 0-9 State the dimensions of the matrix. 52) 8 -2 6 53) 5 0 05 Find the values of the variables. 54) -1 5 -6 = x y -6 1 m -2 1 -7 -2 3