Download L - Calclab

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Fall 2004 Math 151
3 Derivatives
3.4 Limits and Derivatives of
Trigonometric Functions
c
Mon, 27/Sep
2004,
Art Belmonte
Solution
We have
cos θ − 1 cos θ + 1
=
lim
sin θ
cos θ + 1
θ →0
=
Summary
=
Four limits
lim sin θ = 0
sin θ
=1
θ →0 θ
lim cos θ = 1
cos θ − 1
=0
θ
θ →0
θ →0
θ →0
lim
lim
d
(cos x) = − sin x
dx
d
(tan x) = sec2 x
dx
d
(cot x) = − csc2 x
dx
d
(sec x) = sec x tan x
dx
d
(csc x) = − csc x cot x
dx
Find the limit lim
h→0
sin 5h
.
tan 3h
As h → 0, we have
5 sin 5h
sin 5h
5h
5
sin 5h
5h
3
5h
=
→ .
=
1
1
sin 3h
sin 3h
tan 3h
3
3h
3h
cos 3h
3h
cos 3h
185/22
Six antiderivatives
(Refer to Overview of Thu, 15/Jul.)
Z
Z
cos x d x = sin x + C
sin x d x = − cos x + C
Let y = x csc x. Find d y/d x.
Z
sec2 x d x = tan x + C
Solution
csc2 x = − cot x + C
Z
sec x tan x d x = sec x + C
csc x cot x d x = − csc x + C
dy
= (1) csc x + x (− csc x cot x) = csc x (1 − x cot x).
dx
We have
185/26
Hand Examples
Let y =
185/4
Find the limit lim x 2 sec x.
tan x − 1
. Find y 0 .
sec x
Solution
x→π
Rewrite y as y =
Solution
We have lim
x→π
!
Solution
d
(sin x) = cos x
dx
Z
− sin2 θ
lim
θ →0 sin θ (cos θ + 1)
− sin θ
= 0.
lim
θ →0 cos θ + 1
!
185/14
Six derivatives
Z
lim
θ →0
cos2 θ − 1
sin θ (cos θ + 1)
sin x
− 1 cos x = sin x − cos x. Then
cos x
π2
π2
x2
=
=
= −π 2 .
cos x
cos π
−1
y 0 = cos x + sin x.
186/44
185/10
cos θ − 1
.
sin θ
θ →0
1 − cos x
.
x→0
2x 2
Find the limit lim
Find lim
1
Solution
353/14
Find the most general antiderivative of f (θ ) = θ + sec θ tan θ .
We have
1 − cos x 1 + cos x
=
lim
1 + cos x
x→0
2x 2
x→0
=
lim
lim
1 − cos2 x
2x 2 (1 + cos x)
sin2 x
x→0 2x 2 (1 + cos x)
=
=
lim
x→0
sin x
x
2
1
2 (1 + cos x)
!
Solution
Z
Z
We have
f (θ ) dθ = θ + sec θ tan θ dθ = 12 θ 2 + sec θ + C.
MATLAB Examples
1
.
4
s185x32
Find an equation of the tangent line to y = 2 sin x at ( π6 , 1).
186/51
Find the limit lim
x→0
sin (sin x)
.
x
Solution
The slope of the tangent line is y 0 ( π6 ). Then use the point-slope
√ formula. The tangent line is y = 1 + 3 x − 16 π .
Solution
We have lim
x→0
sin (sin x) sin x
sin x
x
%-------------------------------------------------% Stewart 185/32
%
syms x
y = 2*sin(x);
yp = diff(y,x); pretty(yp)
= 1.
185/37
2 cos(x)
m = subs(yp, x, sym(pi/6)); pretty(m)
For what values of x does the graph of f (x) = x + 2 sin x have a
horizontal tangent line?
1/2
3
TL = 1 + m*(x - pi/6); pretty(TL)
Solution
1/2
1 + 3
(x - 1/6 pi)
%
h = 1;
x = linspace(pi/6 - h, pi/6 + h);
y = eval(y); TL = eval(TL);
plot(x,y, x,TL,’r--’); grid on; hold on
legend(’function’, ’tangent line’, ...
’Location’, ’NorthWest’)
plot(pi/6, 1, ’go’, ’MarkerFaceColor’, ’g’, ...
’MarkerSize’, 7)
xlabel(’x’)
title(’Stewart 185/32’)
set(gca, ’Ytick’, -1:3)
%
Solve f 0 (x) = 1 + 2 cos x = 0 for x. In other words, where is
cos x = − 12 ? There are infinitely many solutions.
n
o n
o
x ∈ 23 π + 2nπ : n ∈ Z ∪ 43 π + 2nπ : n ∈ Z
Here n is an element of Z, the set of all integers. (Also see
MATLAB Examples.)
353/12
echo off; diary off
√
Find the most general antiderivative of f (t) = sin t − 2 t.
Stewart 185/32
3
function
tangent line
Solution
2
(If needed, review the Summary and also the Overview of 15/Jul.)
Rewrite f as f (t) = sin t − 2t 1/2 . Then
Z
Z
f (t) dt =
sin t − 2t 1/2 dt
=
2 3/2
t
+C
− cos t −
3/2
=
− cos t − 43 t 3/2 + C.
1
0
−1
−0.5
0
0.5
1
x
2
1.5
2
s185x37 [185/37 revisited]
Stewart 186/57
s
For what values of x does the graph of f (x) = x + 2 sin x have a
horizontal tangent line?
d
Solution
r
θ
r
In the corresponding hand example, we obtained
n
o n
o
x ∈ 23 π + 2nπ ∪ 43 π + 2nπ .
Let’s illustrate this with a graph.
%-------------------------------------------------% Stewart 185/37
%
x = linspace(-10, 10);
f = x + 2*sin(x);
plot(x,f); grid on; hold on
plot([-10 10], [0 0], ’g’)
plot([0 0], [-15 15], ’g’)
xlabel(’x’); ylabel(’y’)
title(’Stewart 185/37’)
%
%-------------------------------------------------% Stewart 186/57
%
t1 = d2r(linspace(40, 140));
t2 = d2r(linspace(140, 400));
x1 = cos(t1); y1 = sin(t1);
x2 = cos(t2); y2 = sin(t2);
x3 = cos(t1(1)); y3 = sin(t1(1));
x4 = cos(t2(1)); y4 = sin(t2(1));
%
plot(x1,y1,’r--’)
grid on; hold on
plot(x2,y2,’k’)
plot([x3 x4], [y3 y4], ’b-.’)
plot([0 x3], [0 y3], ’k’)
plot([0 x4], [0 y4], ’k’)
axis equal
axis([-1.2 1.2 -1.2 1.2])
axis off
%
echo off; diary off
Stewart 185/37
15
10
echo off; diary off
y
5
0
−5
−10
−15
−10
−5
0
x
5
10
s186x57
The figure at top right shows a circular arc of length s and a chord
s
of length d, both subtended by a central angle θ . Find lim .
+
θ →0 d
Solution
Let r be the radius of the circle. Recall that arc length is s = r θ .
Drop a perpendicular from the center of the circle to the chord.
1
+
Then sin 12 θ = d/2
r , whence d = 2r sin 2 θ . Hence as θ → 0 ,
1
θ
θ
s
we have =
= 2 1 → 1, as one would expect
1
d
2 sin 2 θ
sin 2 θ
(since for small angles the arc is almost a straight line)!
3
Related documents