Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Fall 2004 Math 151 3 Derivatives 3.4 Limits and Derivatives of Trigonometric Functions c Mon, 27/Sep 2004, Art Belmonte Solution We have cos θ − 1 cos θ + 1 = lim sin θ cos θ + 1 θ →0 = Summary = Four limits lim sin θ = 0 sin θ =1 θ →0 θ lim cos θ = 1 cos θ − 1 =0 θ θ →0 θ →0 θ →0 lim lim d (cos x) = − sin x dx d (tan x) = sec2 x dx d (cot x) = − csc2 x dx d (sec x) = sec x tan x dx d (csc x) = − csc x cot x dx Find the limit lim h→0 sin 5h . tan 3h As h → 0, we have 5 sin 5h sin 5h 5h 5 sin 5h 5h 3 5h = → . = 1 1 sin 3h sin 3h tan 3h 3 3h 3h cos 3h 3h cos 3h 185/22 Six antiderivatives (Refer to Overview of Thu, 15/Jul.) Z Z cos x d x = sin x + C sin x d x = − cos x + C Let y = x csc x. Find d y/d x. Z sec2 x d x = tan x + C Solution csc2 x = − cot x + C Z sec x tan x d x = sec x + C csc x cot x d x = − csc x + C dy = (1) csc x + x (− csc x cot x) = csc x (1 − x cot x). dx We have 185/26 Hand Examples Let y = 185/4 Find the limit lim x 2 sec x. tan x − 1 . Find y 0 . sec x Solution x→π Rewrite y as y = Solution We have lim x→π ! Solution d (sin x) = cos x dx Z − sin2 θ lim θ →0 sin θ (cos θ + 1) − sin θ = 0. lim θ →0 cos θ + 1 ! 185/14 Six derivatives Z lim θ →0 cos2 θ − 1 sin θ (cos θ + 1) sin x − 1 cos x = sin x − cos x. Then cos x π2 π2 x2 = = = −π 2 . cos x cos π −1 y 0 = cos x + sin x. 186/44 185/10 cos θ − 1 . sin θ θ →0 1 − cos x . x→0 2x 2 Find the limit lim Find lim 1 Solution 353/14 Find the most general antiderivative of f (θ ) = θ + sec θ tan θ . We have 1 − cos x 1 + cos x = lim 1 + cos x x→0 2x 2 x→0 = lim lim 1 − cos2 x 2x 2 (1 + cos x) sin2 x x→0 2x 2 (1 + cos x) = = lim x→0 sin x x 2 1 2 (1 + cos x) ! Solution Z Z We have f (θ ) dθ = θ + sec θ tan θ dθ = 12 θ 2 + sec θ + C. MATLAB Examples 1 . 4 s185x32 Find an equation of the tangent line to y = 2 sin x at ( π6 , 1). 186/51 Find the limit lim x→0 sin (sin x) . x Solution The slope of the tangent line is y 0 ( π6 ). Then use the point-slope √ formula. The tangent line is y = 1 + 3 x − 16 π . Solution We have lim x→0 sin (sin x) sin x sin x x %-------------------------------------------------% Stewart 185/32 % syms x y = 2*sin(x); yp = diff(y,x); pretty(yp) = 1. 185/37 2 cos(x) m = subs(yp, x, sym(pi/6)); pretty(m) For what values of x does the graph of f (x) = x + 2 sin x have a horizontal tangent line? 1/2 3 TL = 1 + m*(x - pi/6); pretty(TL) Solution 1/2 1 + 3 (x - 1/6 pi) % h = 1; x = linspace(pi/6 - h, pi/6 + h); y = eval(y); TL = eval(TL); plot(x,y, x,TL,’r--’); grid on; hold on legend(’function’, ’tangent line’, ... ’Location’, ’NorthWest’) plot(pi/6, 1, ’go’, ’MarkerFaceColor’, ’g’, ... ’MarkerSize’, 7) xlabel(’x’) title(’Stewart 185/32’) set(gca, ’Ytick’, -1:3) % Solve f 0 (x) = 1 + 2 cos x = 0 for x. In other words, where is cos x = − 12 ? There are infinitely many solutions. n o n o x ∈ 23 π + 2nπ : n ∈ Z ∪ 43 π + 2nπ : n ∈ Z Here n is an element of Z, the set of all integers. (Also see MATLAB Examples.) 353/12 echo off; diary off √ Find the most general antiderivative of f (t) = sin t − 2 t. Stewart 185/32 3 function tangent line Solution 2 (If needed, review the Summary and also the Overview of 15/Jul.) Rewrite f as f (t) = sin t − 2t 1/2 . Then Z Z f (t) dt = sin t − 2t 1/2 dt = 2 3/2 t +C − cos t − 3/2 = − cos t − 43 t 3/2 + C. 1 0 −1 −0.5 0 0.5 1 x 2 1.5 2 s185x37 [185/37 revisited] Stewart 186/57 s For what values of x does the graph of f (x) = x + 2 sin x have a horizontal tangent line? d Solution r θ r In the corresponding hand example, we obtained n o n o x ∈ 23 π + 2nπ ∪ 43 π + 2nπ . Let’s illustrate this with a graph. %-------------------------------------------------% Stewart 185/37 % x = linspace(-10, 10); f = x + 2*sin(x); plot(x,f); grid on; hold on plot([-10 10], [0 0], ’g’) plot([0 0], [-15 15], ’g’) xlabel(’x’); ylabel(’y’) title(’Stewart 185/37’) % %-------------------------------------------------% Stewart 186/57 % t1 = d2r(linspace(40, 140)); t2 = d2r(linspace(140, 400)); x1 = cos(t1); y1 = sin(t1); x2 = cos(t2); y2 = sin(t2); x3 = cos(t1(1)); y3 = sin(t1(1)); x4 = cos(t2(1)); y4 = sin(t2(1)); % plot(x1,y1,’r--’) grid on; hold on plot(x2,y2,’k’) plot([x3 x4], [y3 y4], ’b-.’) plot([0 x3], [0 y3], ’k’) plot([0 x4], [0 y4], ’k’) axis equal axis([-1.2 1.2 -1.2 1.2]) axis off % echo off; diary off Stewart 185/37 15 10 echo off; diary off y 5 0 −5 −10 −15 −10 −5 0 x 5 10 s186x57 The figure at top right shows a circular arc of length s and a chord s of length d, both subtended by a central angle θ . Find lim . + θ →0 d Solution Let r be the radius of the circle. Recall that arc length is s = r θ . Drop a perpendicular from the center of the circle to the chord. 1 + Then sin 12 θ = d/2 r , whence d = 2r sin 2 θ . Hence as θ → 0 , 1 θ θ s we have = = 2 1 → 1, as one would expect 1 d 2 sin 2 θ sin 2 θ (since for small angles the arc is almost a straight line)! 3