Download Section 8.2 The Sum and difference Formulas

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section 8.2 The Sum and difference Formulas
Unlike the identities in the previous section, where our identities contained only one variable, many of
the identities in this section contain two variables.
OBJECTIVE 1:
Understanding the Sum and Difference Formulas for the Cosine Function
!
The$Sum$and$Difference$Formulas$for$the$Cosine$Function$
cos (α + β ) = cos α cos β − sin α sin β !
Cosine$of$the$Sum$of$Two$Angles$Formula
cos (α − β ) = cos α cos β + sin α sin β $
Cosine$of$the$Difference$of$Two$Angles$Formula$
In Class. Prove the Cosine of the Difference of Two Angles Formula.
EXAMPLES. Find the exact value of each trig expression without the use of a calculator.
" 5π 7π %
−
8.2.7 cos $
'
# 4
6 &
" π%
8.2.13 sec $ − '
# 12 &
8.2.14 Suppose the terminal side of angle α lies in Quadrant I and the terminal side of angle β lies in
3
8
Quadrant IV. If sin α =
and cos β =
,!find the exact value of cos(α + β ) .
17
11
€
€
€
OBJECTIVE 2:
Understanding the Sum and Difference Formulas for the Sine Function
Recall the Cofunction Identities for Sine and Cosine (6.4).
1.
!
2.
!
The$Sum$and$Difference$Formulas$for$the$Sine$Function$$$
$$$$$$$$$
sin (α + β ) = sin α cos β + cos α sin β !
Sine$of$the$Sum$of$Two$Angles$Formula$
sin (α − β ) = sin α cos β − cos α sin β $
Sine$of$the$Difference$of$Two$Angles$Formula$
$
$$$$$$$
$
$
$
$
$
In Class: Prove the sine of the sum of two angles formula by using a cofunction identity and the cosine
of the difference of two angles formula.
EXAMPLES. Find the exact value of each trig expression without the use of a calculator.
8.2.21 sin(210° +135°)
! π $ ! 2π $
! π $ ! 2π $
8.2.24 sin # & cos # & + cos # & sin # &
" 12 % " 3 %
" 12 % " 3 %
8.2.30 Suppose that α is an angle such that tan α =
4
and sin α < 0 . Also suppose that β is an angle
9
2
such that cot β = − and sec β > 0 . Find the exact value of sin(α + β ) .
7
€
€
€
OBJECTIVE 3:
Understanding the Sum and Difference Formulas for the Tangent Function$
$
$
The$Sum$and$Difference$Formulas$for$the$Tangent$Function$
tan (α + β ) =
tan α + tan β
! !
1 − tan α tan β
!
Tangent$of$the$Sum$of$Two$Angles$Formula$
tan (α − β ) =
tan α − tan β
$ $
1 + tan α tan β
$
Tangent$of$the$Difference$of$Two$Angles$Formula$
Derive (or Prove) the tangent of the sum of two angles formula.
EXAMPLES. Find the exact value of each trig expression without the use of a calculator.
! 4π $
! 2π $
tan # & − tan # &
" 5 %
" 15 %
8.2.40
! 4π $ ! 2 π $
1+ tan # & tan # &
" 5 % " 15 %
8.2.41 tan(15°)
8.2.44 Suppose the terminal side of angle α lies in Quadrant II and the terminal side of angle β lies in
1
3
Quadrant III. If sin α = !and cos β = − ,!find the exact value of tan(α + β ) .
4
5
€
€
€
OBJECTIVE 4:
Using the Sum and Difference Formulas to Verify Identities
If one side of an identity includes an expression of the form cos(α ± β ) or sin(α ± β ) or tan(α ± β ) , first
use one of the sum or difference formulas, then use the strategies from Section 8.1 to verify identities.
!π
$
8.2.46 sin # + θ & = cosθ
"2
%
€
€
€
8.2.51 csc(α − β ) =
csc α csc β
cot β − cot α
OBJECTIVE 5:
Using the sum and Difference Formulas to Evaluate Expressions Involving
Inverse Trigonometric Functions
$
Review Inverse Trigonometric Functions (7.4)
y = sin−1 x $
$
$$$$$$ y = cos−1 x $ $
$$$$ y = tan−1 x $$$$$$$$$$$$$$$$$$!
EXAMPLES. Find the exact value of each expression without the use of a calculator.
€
" €
3%
8.2.52 sin $ tan −1 1+ cos−1
'
2 &
#
"
" 3 %%
1
8.2.54 sin $ sin −1 − cos−1 $ − ''
# 7 &&
6
#
€
Related documents