Download x - Mindset Learn

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
REVISING TRIGONOMETRY
24 AUGUST 2015
Section B: Exam practice questions
Question 1
If 13sin  5  0
where
 90 ; 360 and 5cos   4  0 where tan   0, calculate without the
use of a calculator and with the aid of diagrams the value of the following:
1.1
sin(  )
(9)
1.2
tan(90  )
(5)
Question 2
Simplify without using a calculator:
2.1
cos(50  x) cos(20  x)  sin(50  x) sin(20  x)
(3)
2.2
cos(140) cos 740  sin140 sin(20)
(6)
Question 3
Show that:
sin 2 20  sin 2 40  sin 2 80 
3
2
(7)
Question 4
4.1
4.2
Prove:
sin 4 x  sin 2 x cos2 x
 1  cos x
1  cos x
For which values of x is
sin 4 x  sin 2 x cos2 x
 1  cos x
1  cos x
(4)
not true?
(2)
Question 5
A, B and L are points in the same horizontal plane, HL is a vertical pole of length 3 metres,
AL = 5,2 m, the angle
5.1
5.2
5.3
AL̂B  113 ° and the angle of elevation of H from B is 40.
Calculate the length of LB.
Hence, or otherwise, calculate the length of AB.
Determine the area of ABL.
(2)
(4)
(4)
H
3
m
5,2
mm
L
113
40
B
m
A
Question 6
Right-angled triangle ABC is drawn. Equilateral triangles ACD, BCE and ABF are drawn on each side
as shown.
Prove that:
Area ADC  Area ABF  Area CBE
(7)
Section C: Solutions
1.1
(x ; 5)
 diagram for 
13
5

13sin   5  0
5
 sin  
(positive in Quad 1 or 2)
13
  90 ; 360 (Quad 2, 3 or 4)
 sin  
5
13
Common quad is 2
x 2  (5) 2  (13) 2
 x 2  144
 x  12
 x  12
4

 diagram for 
5
(  4; y)
5cos   4  0
4
 cos  
(negative in Quad 2 or 3)
5
tan   0 (Quad 1 or 3)
Common quad is 3
 cos  
(  4)2  y 2  (5)2
 y2  9
 y  3
 y  3
4
5
sin(  )
 sin  cos   cos  sin 
 5  4   12  3 
     
 
 13  5   13  5 
20 36


65 65
56

65
 sin  cos   cos  sin 
 correct substitution
 answer
(9)
1.2
tan(90  )
sin(90  )

cos(90  )
cos 

 sin 
12
 13
5

13
12

5
sin(90  )
 cos(90  )
 cos 
  sin 
 correct substitution
 answer
(5)
2.1
cos(50  x) cos(20  x)  sin(50  x) sin(20  x)
cos (50  x)  (20  x) 

 cos30
3
 2
(3)
  cos 40
 cos 20
 sin 40
  sin 20
  cos60
1

 2
(6)
 cos  (50  x)  (20  x) 
 cos 30
3
2
cos(140) cos 740  sin140 sin(20)

2.2
 cos140 cos 20  (sin 40)( sin 20)
 ( cos 40)(cos 20)  sin 40 sin 20
  cos 40 cos 20  sin 40 sin 20
 (cos 40 cos 20  sin 40 sin 20)
  cos 60
1

2
3
sin 2 (60  20)
sin 2 20  sin 2 40  sin 2 80

 sin 2 20  sin 2 (60  20)  sin 2 (60  20)
 sin 2 (60  20)
 expansions
 substitution
 simplification
 answer
 sin 2 20  sin 60 cos 20  cos 60 sin 20
2
 sin 60 cos 20  cos 60 sin 20
2
 3 

1
 sin 20  
cos
20


sin
20



 
2
 2 

2
2
 3 

1
 
 cos 20    sin 20
2
 2 

2
 3 cos 20  sin 20 
 sin 20  

2


2
2
 3 cos 20  sin 20 


2


 sin 2 20 

2
3cos 2 20  2 3 cos 20 sin 20  sin 2 20
4
3cos 2 20  2 3 cos 20 sin 20  sin 2 20
4
 sin 2 20 
6 cos 2 20  2sin 2 20
4
4sin 2 20  6 cos 2 20  2sin 2 20

4
6(sin 2 20  cos 2 20)

4
6(1) 3


4
2
(7)
4.1
sin 4 x  sin 2 x cos 2 x
1  cos x
sin 2 x(sin 2 x  cos 2 x)

1  cos x




factorisation
sin 2 x  cos 2 x  1
1  cos 2 x
(1  cos x)(1  cos x)
(4)
(sin 2 x)(1)

1  cos x
1  cos 2 x
1  cos x
(1  cos x)(1  cos x)

1  cos x
 1  cos x
1  cos x  0
 cos x  1
 x  180  k .360
where k 

4.2
5.1
5.2
1  cos x  0
x  180  k.360
(2)
3
 tan 40
LB
3
 LB 
tan 40
 LB  3,58 m
 definition
 answer
AB2  AL2  BL2  2.AL.BL.cos113
 cosine rule
 substitution
 answer
 AB2  (5, 2) 2  (3,58) 2  2(5, 2)(3,58) cos113
5.3


 AB2  54, 40410138 m 2
 AB  7,38 m
1
ˆ
Area of ABL  AL.BL.sin ALB
2
1
 (5, 2)(3,58) sin113
2
 8.568059176
 8,57 m
(3)
(4)
 area rule
 substitution
 answer
(4)
6.
Area ADC 
1
(b)(b) sin 60
2
1
3
3b 2
 Area ADC  b 2

2
2
4
Area ABF 
3c 2
4
Area CBE 
3a 2
4
3c 2
3a 2

4
4
3 2
 Area ABF  Area CBE 
(c  a 2 )
4
 Area ABF  Area CBE 
3 2
3b 2
 Area ABF  Area CBE 
(b ) 
4
4
 Area ADC  Area ABF  Area CBE
 area rule
 equal sides
 60
3b 2
4
3c 2
 Area ABF 
4
 Area ADC 
3a 2
 Area CBE 
4
 use of Pythagoras to
establish identity
(7)
Related documents