Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
REVISING TRIGONOMETRY 24 AUGUST 2015 Section B: Exam practice questions Question 1 If 13sin 5 0 where 90 ; 360 and 5cos 4 0 where tan 0, calculate without the use of a calculator and with the aid of diagrams the value of the following: 1.1 sin( ) (9) 1.2 tan(90 ) (5) Question 2 Simplify without using a calculator: 2.1 cos(50 x) cos(20 x) sin(50 x) sin(20 x) (3) 2.2 cos(140) cos 740 sin140 sin(20) (6) Question 3 Show that: sin 2 20 sin 2 40 sin 2 80 3 2 (7) Question 4 4.1 4.2 Prove: sin 4 x sin 2 x cos2 x 1 cos x 1 cos x For which values of x is sin 4 x sin 2 x cos2 x 1 cos x 1 cos x (4) not true? (2) Question 5 A, B and L are points in the same horizontal plane, HL is a vertical pole of length 3 metres, AL = 5,2 m, the angle 5.1 5.2 5.3 AL̂B 113 ° and the angle of elevation of H from B is 40. Calculate the length of LB. Hence, or otherwise, calculate the length of AB. Determine the area of ABL. (2) (4) (4) H 3 m 5,2 mm L 113 40 B m A Question 6 Right-angled triangle ABC is drawn. Equilateral triangles ACD, BCE and ABF are drawn on each side as shown. Prove that: Area ADC Area ABF Area CBE (7) Section C: Solutions 1.1 (x ; 5) diagram for 13 5 13sin 5 0 5 sin (positive in Quad 1 or 2) 13 90 ; 360 (Quad 2, 3 or 4) sin 5 13 Common quad is 2 x 2 (5) 2 (13) 2 x 2 144 x 12 x 12 4 diagram for 5 ( 4; y) 5cos 4 0 4 cos (negative in Quad 2 or 3) 5 tan 0 (Quad 1 or 3) Common quad is 3 cos ( 4)2 y 2 (5)2 y2 9 y 3 y 3 4 5 sin( ) sin cos cos sin 5 4 12 3 13 5 13 5 20 36 65 65 56 65 sin cos cos sin correct substitution answer (9) 1.2 tan(90 ) sin(90 ) cos(90 ) cos sin 12 13 5 13 12 5 sin(90 ) cos(90 ) cos sin correct substitution answer (5) 2.1 cos(50 x) cos(20 x) sin(50 x) sin(20 x) cos (50 x) (20 x) cos30 3 2 (3) cos 40 cos 20 sin 40 sin 20 cos60 1 2 (6) cos (50 x) (20 x) cos 30 3 2 cos(140) cos 740 sin140 sin(20) 2.2 cos140 cos 20 (sin 40)( sin 20) ( cos 40)(cos 20) sin 40 sin 20 cos 40 cos 20 sin 40 sin 20 (cos 40 cos 20 sin 40 sin 20) cos 60 1 2 3 sin 2 (60 20) sin 2 20 sin 2 40 sin 2 80 sin 2 20 sin 2 (60 20) sin 2 (60 20) sin 2 (60 20) expansions substitution simplification answer sin 2 20 sin 60 cos 20 cos 60 sin 20 2 sin 60 cos 20 cos 60 sin 20 2 3 1 sin 20 cos 20 sin 20 2 2 2 2 3 1 cos 20 sin 20 2 2 2 3 cos 20 sin 20 sin 20 2 2 2 3 cos 20 sin 20 2 sin 2 20 2 3cos 2 20 2 3 cos 20 sin 20 sin 2 20 4 3cos 2 20 2 3 cos 20 sin 20 sin 2 20 4 sin 2 20 6 cos 2 20 2sin 2 20 4 4sin 2 20 6 cos 2 20 2sin 2 20 4 6(sin 2 20 cos 2 20) 4 6(1) 3 4 2 (7) 4.1 sin 4 x sin 2 x cos 2 x 1 cos x sin 2 x(sin 2 x cos 2 x) 1 cos x factorisation sin 2 x cos 2 x 1 1 cos 2 x (1 cos x)(1 cos x) (4) (sin 2 x)(1) 1 cos x 1 cos 2 x 1 cos x (1 cos x)(1 cos x) 1 cos x 1 cos x 1 cos x 0 cos x 1 x 180 k .360 where k 4.2 5.1 5.2 1 cos x 0 x 180 k.360 (2) 3 tan 40 LB 3 LB tan 40 LB 3,58 m definition answer AB2 AL2 BL2 2.AL.BL.cos113 cosine rule substitution answer AB2 (5, 2) 2 (3,58) 2 2(5, 2)(3,58) cos113 5.3 AB2 54, 40410138 m 2 AB 7,38 m 1 ˆ Area of ABL AL.BL.sin ALB 2 1 (5, 2)(3,58) sin113 2 8.568059176 8,57 m (3) (4) area rule substitution answer (4) 6. Area ADC 1 (b)(b) sin 60 2 1 3 3b 2 Area ADC b 2 2 2 4 Area ABF 3c 2 4 Area CBE 3a 2 4 3c 2 3a 2 4 4 3 2 Area ABF Area CBE (c a 2 ) 4 Area ABF Area CBE 3 2 3b 2 Area ABF Area CBE (b ) 4 4 Area ADC Area ABF Area CBE area rule equal sides 60 3b 2 4 3c 2 Area ABF 4 Area ADC 3a 2 Area CBE 4 use of Pythagoras to establish identity (7)