Download Q Q v -

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lect 11
Real Space Transfer Transistors
-1-
TRANSISTOR PRINCIPLES : FETs & PETs
Field Effect:
Screening
- Q
v
Q
Potential Effect:
Control of a cathode work function
δΦ
Φ
V CE
Lect 11
Real Space Transfer Transistors
-2-
FETs:
- Q
I =
Qv
v
L
Q
L
"Biblical" principle:
"Transit time" limitation :
τ >
Q in
I out
=
L
v
Q for Q
I for I
Lect 11
Real Space Transfer Transistors
-3-
PETs
’
’
δΦ
Φ
V CE
− Φ /kT
Ι ~ e
δΦ ~ δ Q
τ ~
Ι
-1
in
Speed increases with current until
exponential law fails at high currents
PET
τ
FET (space-charge effect)
limited by transit time across
Lect 11
Real Space Transfer Transistors
-4-
Charge Injection Transistor (CHINT)
Operating principle:
ΙA
Control of
cathode temperature
T3
Anode
T2
T1
Cathode
VA
ΙA
Cathode
Heater
VA3
Heating
Voltage
VA2
VA1
S
D
T
Emitter
Barrier
Hot-electron
cathode
Collector
C
Lect 11
Real Space Transfer Transistors
Ballistic Electrons
&
-5-
Hot Electrons
Distribution
f (E)
f (E) ~ e
- E/kT e
f (E) ~ δ (E-E 0 )
kTe
E0
energy
MOMOM
E
SMS
( THETA )
IBT
HBT
Ballistic Transistors
Lect 11
Real Space Transfer Transistors
-6-
Real Space Transfer
+
+ + +
+ + +
+
I
DRAIN
V
SOURCE
Ballistic Electrons
&
Hot Electrons
f (E) ~ e
Distribution
f (E)
kTe
- E/kT e
f (E) ~ δ (E-E 0 )
E0
energy
E
Lect 11
Real Space Transfer Transistors
-7-
CHINT Structures
1984:
n AlGaAs
S
D
GaAs
AlGaAs
COLLECTOR
n GaAs
VC
1990:
S
D
o
300 A
C
o
InGaAs n +
InGaAs n -
Emitter
500 A
Barrier
2000 A
InAlAs
Collector
~ 1 µm
InGaAs
o
u
n+
Lect 11
Real Space Transfer Transistors
P.Mensz, P.Garbinski,
A.Cho, D.Sivco, S.Luryi
Appl. Phys. Lett. 57 , 2563 (1990)
InGaAs/InAlAs CHINT
S
-8-
D
L CH
g
h
f
e
d
BARRIER
c
C
b
a
COLLECTOR
Semi-insulating InP substrate
o
a: 5000 A InGaAs
b: 500 A InGaAs
19
n
( Si: 10
n
( Si: 10 17 )
o
)
o
e:
25 A
f: 200 A InGaAs
o
o
c: 2000 A InAlAs
500 A InGaAs
n
( Si: 10 19 )
n
( Sn: 10
20
)
o
( Si: 10
16
)
h:
Si 3 N 4
5
10
T = 300 K
W = 25 µ m
4
3
1 µm
S
8
D
2
6
4
C
1
0
2
4
+ 3.9 V
6
Heating Voltage VD
8
2
10
Collector Current (mA)
Drain Current (mA)
n
g: 500 A Ti / 1000 A Au
u
o
d
InAlAs
o
Lect 11
Real Space Transfer Transistors
-9-
Hot-Electron Instabilities in CHINT
k
o
0
q
p
-1
u
-2
all
stable
states
-3
d
-4
-1.0
-0.5
0.0
0.5
1.0
Source-Drain Voltage (V)
1.5
2.0
2.0
u
Potential, V
Drain Current (A/cm)
1
1.5
t
s
1.0
V
D
0.5
k
0.0
0
S
1
2
3
Distance, um
4
5
D
Lect 11
Real Space Transfer Transistors
- 10 -
Broken Symmetry States in CHINT
S. Luryi and M. Pinto
Phys. Rev. Lett. 67 , 2351 (1991)
k
o
0
s
a
b
-1
t
Multiply-connected
I - V characteristics
c
u
-2
VC
= 2V
7
v sat = 10 cm/s
dB
-3
= 0.2 um
L ch = 5 um
d
-4
-1.0
-0.5
0.0
0.5
1.0
Source-Drain Voltage (V)
1.5
2.0
Anomalous
collector-controlled
states at V DS = 0
Electron Temperature (eV)
Drain Current (A/cm)
1
0.15
a
d
b
c
0.10
0.05
+ VC
0.00
0
1
2
3
4
Source-Drain Distance (um)
5
Lect 11
Real Space Transfer Transistors
- 11 -
Broken Symmetry States in CHINT
a
b
-1
Anomalous
collector-controlled
states at V DS = 0
k
o
0
s
t
c
u
-2
-3
d
-4
-1.0
-0.5
Electron Temperature (eV)
Drain Current (A/cm)
1
0.0
0.5
1.0
Source-Drain Voltage (V)
0.15
1.5
2.0
+ VC
d
a
d
b
c
0.10
0.05
0.00
0
1
2
3
4
Source-Drain Distance (um)
5
Lect 11
Real Space Transfer Transistors
- 12 -
Evolution of non-stationary states
1
Drain Current (A/cm)
Collector Current (A/cm)
8.0
6.0
4.0
k
o
0
s
a
b
-1
t
c
- +
u
-2
V = 2V
C
2.0
-3
d
0.0
-4
0
10
20
30
-1.0
40
Time (ps)
-0.5
0.0
0.5
1.0
Source-Drain Voltage (V)
1.5
Electron Temperature (eV)
0.6
0.4
ab+
c+
d
a+
bc-
o
0.2
0.0
0
1
2
3
Source-Drain Distance (um)
4
5
2.0
Lect 11
Real Space Transfer Transistors
- 13 -
8.0
2
2V
6.0
VC
4.0
1V
2.0
+ VC
Potential (V)
collector Current (A/cm)
Realization of anomalous states
by rapid ramping of V C
1
0.0
0
10
20
30
40
50
τcr
t (ps)
0
0
Critical ramping speed is determined
by the rate at which the increasing
fringing field ( ~ dVC /dt )
is screened by channel electrons ( ~ vsat )
VSD
100
612
311
312
212
321
322
10
linear
quadratic
1
2
3
4
5
100
Critical ramping time (ps)
Critical ramping time (ps)
τcr
1
Source-Drain Distance (um)
L ch = 5 um
75
Db = 0.2 um
vsat = 107cm/s
50
25
V = 1.211 V
cr
0
1
10
Channel length (um)
0
1
2
3
4
5
Endramp voltage Vmax (V)
6
Lect 11
Real Space Transfer Transistors
- 14 -
Formation of Hot-Electron Domains
Drain Current (A/cm)
1
k
o
0
q
p
-1
u
-2
all
stable
states
-3
d
-4
-1.0
-0.5
0.0
0.5
1.0
Source-Drain Voltage (V)
1.5
2.0
Potential, V
u
1.5
t
s
1.0
V
D
0.5
k
0.0
0
1
2
3
Distance, um
4
5
2.0
Lect 11
Real Space Transfer Transistors
- 15 -
P.Mensz, H.Schumacher, P.Garbinski,
A.Cho, D.Sivco, S.Luryi
IEDM Tech. Digest, p. 395 (1990)
Microwave Studies of CHINT
25
25
IC
Drain Current (mA)
20
20
VD = 0.8 V
S12
15
x 10
15
S 21
2 S/mm
1
10
2
3
10
s
S
5
S11
22
5
ID
0.5 - 25.5 GHz
0
0
1
2
3
4
Heating Voltage V D (V)
20
h 21
10
20
MSG
/de
dB
5
c
Small-Signal Gain (dB)
15
VC = 4.0 V
VD = 0.8 V
MAG
0
L = 0.8 µm
W = 25 µm
-5
0
1
10
Frequency (GHz)
100
Collector Current (mA)
VC = 4.0 V
Lect 11
Real Space Transfer Transistors
- 16 -
Microwave Performance of top-collector CHINT
G. Belenky, P. Garbinski, P. Smith, S. Luryi
A. Y. Cho, R. A. Hamm, D. L. Sivco (1993)
Current Gain (dB)
T = 300 K
c
/de
dB
20
40
InGaAs/InP
30
20
InGaAs/InAlAs
10
0
1
10
Frequency (GHz)
100
Lect 11
Real Space Transfer Transistors
- 17 -
Speed Limits of CHINT
Limiting
mechanisms:
S
D
o
2000 A
a. Establishment of
hot-electron ensemble
Phonons: ~ 1 ps
e-e interaction < 1ps
(if concentration not too low)
b. Charging time
C
transit over high-field regions
~ 2-3 ps
f T ~ 80 - 50 GHz
c. Parasitic C-D
capacitance
presently dominates
C
Collector-top
CHINT preferable
S
K. Maezawa and T. Mizutani,
Jpn. J. Appl. Phys. 30, 1190 (1991)
D
CHINT vs FET
"FET like" but
not limited by
time of flight S->D
in small-signal operation
Lect 11
Real Space Transfer Transistors
- 18 -
Physical Picture
Hot electron ensemble
equilibrates via e-e interaction
RST is due to electrons in high-energy tails
of the distribution function
Tails are repolutated
"instantaneously" from
the main part of distr.
(at high enough conc.)
The effective temperature
of electrons is determined
by energy balance
Te
ρ
Te = f ( | VSD | )
Te
can be very high,
more than 1000 K
The fundamental symmetry
of charge injection by RST
Ε
Φ
D
S
Can interchange
S
D
collector current
will not change !
C
Lect 11
Real Space Transfer Transistors
- 19 -
CHINT logic
S.Luryi, P.Mensz, M.Pinto, P.Garbinski, A.Cho, D.Sivco
Appl. Phys. Lett. 57 , 1787 (1990)
S
D
EMITTER
BARRIER
S
D
IC
OUT
0
0
low
1
0
1
high
0
1
0
high
0
1
1
low
1
COLLECTOR
OUT
RL
XNOR ( S , D )
V CC
S
n+
n-
D
EMITTER
u
BARRIER
p
ACTIVE REGION
p+
L = XOR ( S , D )
COLLECTOR
C
Lect 11
Real Space Transfer Transistors
- 20 -
Light-Emitting CHINT
S. Luryi, Appl. Phys. Lett. 58, 1727 (1990)
RST of electrons
into a complementary collector
EC
Equilibrium
EV
EF
Flat bands
VFB
RST
Operating
regime
VC
hν
Lect 11
Real Space Transfer Transistors
S
Light-emitting
logic RST device
D
n+
n-
- 21 -
EMITTER
u
BARRIER
p
ACTIVE REGION
p+
L = XOR ( S , D )
COLLECTOR
C
Mastrapasqua et al
Appl. Phys. Lett. 60, 2415 (1992)
IEEE TED-40, 250 (1993)
d
S
D
a
c
L ch
b
o
500 A
InGaAs channel
n (Si: 10 17 )
InAlAs barrier
(undoped)
o
2000 A
C
e
o
InGaAs collector active layer
500 A
1µm
p (Be: 10 17 )
p (Be: 3x10 18 )
InAlAs collector confinement layer
InP semi-insulating substrate
o
a: 200 A InGaAs, n (Sn: 10 20 )
o
b: 25 A InAlAs,
o
c: 2500 A Si 3N 4
n (Sn: 10 19 )
o
o
d: 300 A Ti / 1800 A Au
o
o
e: 800 A AuBe / 2000 A Au
Lect 11
Real Space Transfer Transistors
- 22 -
Light = xor ( S , D )
VD (V)
Vc = 3 V
VS (V)
1.5
Time
0
1-0
1-1
0-1
0-0
1.5
0
Light Output
PL (µW)
1
T = 290 K
0.24
0
6x10 -3
0.21
1
T = 235 K
0.43
0.36
3x10 -4
0
3x10 -2
7x10 -3
1.45
0.98
T = 100 K
1
< 10-4
< 10-4
0
Out :
1
0
1
0
Lect 11
Real Space Transfer Transistors
- 23 -
Current = xor ( S , D )
Vc = 3 V
VD (V)
1.5
0
VS (V)
1.5
0
Time
1-0
1-1
0-1
0-0
Collector Current I C (mA)
2.5
2
1.87
1.81
T = 290 K
1
0.4
0
0.98
0.87
1
1.14
T = 235 K
0.06
0
1
0.52
5x10
-8
0.36
T = 100 K
2x10
0
Out :
1
0
1
0
-4
Lect 11
Real Space Transfer Transistors
- 24 -
Band alignment in
InGaAs/InAlAs/InGaAs
n-i-p heterostructure
∆ EC
Φe
h
EF
e
EF
Φh
∆ EV
∆ E C = 0.5 eV
∆ E V = 0.2 eV
Leakage: holes from collector
RST: electrons from emitter channel
Lect 11
Real Space Transfer Transistors
- 25 -
2.0
1.6
1.5
1.2
1.0
0.8
0.5
0.4
0.0
0.0
T = 100 K
VC (V)
2
3.5
3.0
2.5
2.0
1.5
1.0
1
-0.5
-1.0
T = 100 K
VC = 2.5 V
-1.5
0
-2.0 -1.5 -1.0
X
0
X
1.0
1.5
2.0
-2.0
Time
Heating bias V D (V)
VD
Symmetry under interchange
does not imply equivalence
between + and - V D
When VD < 0
the D electrode acts as a source,
gated by the collector voltage
VC
Light Power PL , µW
3
Heating Bias V D , V
Measured Light Power Pm , µW
"Frequency Doubler"
Lect 11
Real Space Transfer Transistors
- 26 -
Symmetry of the CHINT
[ VD , VC ]
[
VD , ( VC
VD ) ]
reflection plane
S
Collector current
invariant under
interchange
S
D
D
C
a similar symmetry exists in FET:
[ VD , VG ]
[
VD , ( VG
but not so important, because
G is not the output terminal
VD ) ]
Lect 11
Real Space Transfer Transistors
- 27 -
CHINT logic
S. Luryi and M. Pinto
US Patent 4,999,687
X3
X1
X3
X2
X3
BARRIER
COLLECTOR
X1
OUT
X2
RL
V CC
OUT = NORAND ( X , X , X )
1
=
( X1
X2
2
X3 )
3
( X1
X2
X3 )
1
0
0
1
1
0
X1
X2
X3
0
1
0
1
0
0
1
1
0
0
0
0
1
0
0
0
N
O
R
0
1
0
1
0
0
1
1
1
1
1
1
0
0
0
1
A
N
D
OUT
Lect 11
Real Space Transfer Transistors
- 28 -
Light-Emitting Device
with OR-NAND Logic Function
M. Mastrapasqua et al.,
IEDM-92, p. 659;
IEEE TED-40 (Aug, 1993)
L = OR
(1,2)
if
3 = low
L = NAND ( 1 , 2 )
if
3 = high
~3
1
2
3
d
L ch
a
o
400 A
b
(Si: 3x10 17 )
InGaAs channel
c
o
1500 A
o
1000 A
o
2000 A
1µm
InAlAs barrier
(undoped)
InGaAs collector active region
(Be: 3x10 17 )
InAlAs collector confinement layer
(Be: 10 18 )
InAlAs collector contact layer
(Be: 10 19 )
InP
substrate
(Zn: 5x10 18 )
o
o
a: 200 A InGaAs, n (Sn: 10 20 )
o
b: 25 A InAlAs,
n (Sn: 10 19 )
e
o
d: 300 A Ti / 1800 A Au
o
o
e: 800 A AuBe / 2000 A Au
o
c: 15 A InGaAs (undoped)
L
C
Lect 11
Real Space Transfer Transistors
- 29 -
OR-NAND Logic
input
voltages:
V3
"0" = 0
"1" = 3 V
T = 300 K
V = 2.4 V
c
1
time
0
V2
1
0
1
V1
0
40
IC
(mA)
( µW )
35
40
33
20
17
18
18
36
34
16
18
6
0
20
PL
33
16
10
0
NAND
.066
OR
Lect 11
Real Space Transfer Transistors
- 30 -
Cancellation of symmetry break
by off-center trench misalignment
~3
1
2
L ch
L ch
3
L ch
(Si: 5x10 17 )
InGaAs channel
InAlAs barrier
(undoped)
InGaAs collector active region
(Be: 3x10 17 )
InAlAs collector confinement layer
(Be: 10 18 )
InAlAs collector contact layer
(Be: 10 19 )
InP
input
V 1 ,V 2
or
V3 = 0
nand
V3 = 1
C
substrate
0, 1
0, 0
1
3
2
2
1
1
~
3
2
1
2
1, 0
~
3
3
1, 1
~
3
2
1
1
2
2
1
3
"working" channels
~
3
3
1
2
Lect 11
Real Space Transfer Transistors
- 31 -
Characteristics of
nearest pairs of electrodes
(mA)
0.8
12
IC
ID
0.6
9
PL
0.4
6
T = 300 K
V C = 2.3 V
0.2
3
W = 40 µ m
0.0
0
1
2
3
Heating Bias V D (V)
4
Drain and Collector Currents
Measured Light Power P L
( µ W)
Lect 11
Real Space Transfer Transistors
vastly different
radiative efficiency
(InGaAs/InAlAs)
Leakage vs RST
S
n+
n-
D
EMITTER
u
BARRIER
p
ACTIVE REGION
p+
- 32 -
InGaAs
InAlAs
InGaAs
InAlAs
COLLECTOR
C
RST
e
InAlAs
InGaAs
InGaAs
InAlAs
hole
leakage
holes injected in the channel recombine non-radiatively
In contrast: InGaAs/InP devices exhibit
similar electrical and optical behavior
Lect 11
Real Space Transfer Transistors
Physics with CHINT
Top collector complementary and unipolar devices
Microwave studies: slow roll-off at high frequencies
Electroluminescence spectra of
hot electron-hole plasma in active layer
Hot-carrier thermometer
Hot-electron instabilities
Broken symmetry
Collector-controlled states
Formation of hot-electron domains
Multiply-connected IV
Impact ionization studies
RST of secondary holes from the channel
Noise studies
Space-charge smoothing of shot noise ?
...
Lot of fun
- 33 -
Lect 11
Real Space Transfer Transistors
- 34 -
Real-space transfer of secondary holes
10
"normally-on"
channel
-4
VC = 0
V
Collector current (A)
10 -6
10 -8
300 K
10
-10
6K
10
-12
10 -14
0
1
2
3
Drain bias (V)
band diagram
near the source
Holes, impact-ionized
near the drain, accelerate
toward the source and
undergo RST
EF
4
Lect 11
Real Space Transfer Transistors
Summary
Transistor Principles
PETs & FETs
Ballistic and Hot electrons
Real Space Transfer
CHINT
Charge Injection Logic
Symmetry of CHINT
Multi-terminal logic elements
NORAND
Light emitting RST devices
Complementary CHINT
InGaAs/InAlAs implementation
ORNAND
Future
More fun
Reprogrammable circuits
Self-organizing systems ?
Logic lasers
Massively parallel systems
- 35 -
Related documents