Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory References Exotic phases and quantum phase transitions: model systems and experiments, Rapporteur talk at the 24th Solvay Conference on Physics, "Quantum Theory of Condensed Matter", arXiv:0901.4103 Quantum magnetism and criticality, Nature Physics 4, 173 (2008), arXiv:0711.3015 Quantum phases and phase transitions of Mott insulators, arXiv:cond-mat/0401041 Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory TlCuCl3 TlCuCl3 An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero. TlCuCl3 at ambient pressure N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001). TlCuCl3 at ambient pressure Sharp spin 1 particle excitation above an energy gap (spin gap) N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001). Square lattice antiferromagnet ! !i · S !j H= Jij S !ij" Ground state has long-range Néel order !i Order parameter is a single vector field ϕ ! = ηi S ηi = ±1 on two sublattices !! ϕ" = # 0 in Néel state. Square lattice antiferromagnet ! !i · S !j H= Jij S !ij" J J/λ Weaken some bonds to induce spin entanglement in a new quantum phase Square lattice antiferromagnet ! !i · S !j H= Jij S !ij" J J/λ Ground state is a “quantum paramagnet” with spins locked in valence bond singlets " " ! # #$ 1 " " = √ "↑↓ −" ↓↑ 2 λ λc Pressure in TlCuCl3 λc λ Quantum critical point with non-local entanglement in spin wavefunction Excitation spectrum in the paramagnetic phase λc λ Excitation spectrum in the paramagnetic phase λc λ Excitation spectrum in the paramagnetic phase λc λ Excitation spectrum in the paramagnetic phase λc λ Excitation spectrum in the paramagnetic phase λc λ TlCuCl3 at ambient pressure Sharp spin 1 particle excitation above an energy gap (spin gap) N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001). Excitation spectrum in the Néel phase λc λ Excitation spectrum in the Néel phase λc Spin waves λ Excitation spectrum in the Néel phase λc Spin waves λ Quantum critical Classical spin waves Neel order Dilute triplon gas Discussion of quantum rotor model Description using Landau-Ginzburg field theory λc λ CFT3 O(3) order parameter ϕ ! S= ! " % $ 2 2 2 2 2 2 2 d rdτ (∂τ ϕ) + c (∇r ϕ $ ) + (λ − λc )$ ϕ +u ϕ $ # Excitation spectrum in the paramagnetic phase 1.0 λc 0.5 λ 0.0 !0.5 " 2 2 2 V (! ϕ) = (λ − λc )! ϕ +u ϕ ! λ >λ c ! !1.0 2.0 V (! ϕ) 1.5 1.0 0.5 0.0 ϕ ! Spin S = 1 “triplon” Excitation spectrum in the paramagnetic phase 1.0 λc 0.5 λ 0.0 !0.5 " 2 2 2 V (! ϕ) = (λ − λc )! ϕ +u ϕ ! λ >λ c ! !1.0 2.0 V (! ϕ) 1.5 1.0 0.5 0.0 ϕ ! Spin S = 1 “triplon” Excitation spectrum in the paramagnetic phase 1.0 λc 0.5 λ 0.0 !0.5 " 2 2 2 V (! ϕ) = (λ − λc )! ϕ +u ϕ ! λ >λ c ! !1.0 2.0 V (! ϕ) 1.5 1.0 0.5 0.0 ϕ ! Spin S = 1 “triplon” Excitation spectrum in the paramagnetic phase 1.0 λc 0.5 λ 0.0 !0.5 " 2 2 2 V (! ϕ) = (λ − λc )! ϕ +u ϕ ! λ >λ c ! !1.0 2.0 V (! ϕ) 1.5 1.0 0.5 0.0 ϕ ! Spin S = 1 “triplon” Excitation spectrum in the paramagnetic phase 1.0 λc 0.5 λ 0.0 !0.5 " 2 2 2 V (! ϕ) = (λ − λc )! ϕ +u ϕ ! λ >λ c ! !1.0 2.0 V (! ϕ) 1.5 1.0 0.5 0.0 ϕ ! Spin S = 1 “triplon” Excitation spectrum in the Néel phase λc λ Excitation spectrum in the Néel phase λc Spin waves λ Excitation spectrum in the Néel phase λc Spin waves λ Excitation spectrum in the Néel phase λc 0.0 V (! ϕ) !0.1 1.0 !0.2 0.5 !0.3 !1.0 ϕ ! 0.0 !0.5 !0.5 0.0 0.5 " 2 2 2 V (! ϕ) = (λ − λc )! ϕ +u ϕ ! λ <λ c ! λ Excitation spectrum in the Néel phase λc 0.0 V (! ϕ) !0.1 1.0 !0.2 " 2 2 2 V (! ϕ) = (λ − λc )! ϕ +u ϕ ! λ <λ c ! λ 0.5 !0.3 !1.0 Field theory yields spin waves (“Goldstone” modes) but also an additional longitudinal “Higgs” particle ϕ ! 0.0 !0.5 !0.5 0.0 0.5 TlCuCl3 with varying pressure Observation of 3 → 2 low energy modes, emergence of new Higgs particle in the Néel phase, and vanishing of Néel temperature at the quantum critical point Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008) Prediction of quantum field theory Energy of “Higgs” particle √ = 2 Energy of triplon TlCuCl3 pc = 1.07 kbar T = 1.85 K 1 0.8 c c Energy √2*E(p < p ), E(p > p ) [meV] 1.4 1.2 Q=(0 4 0) L (p < pc) L (p > pc) Q=(0 0 1) 0.6 L,T1 (p < pc) L (p > pc) 0.4 0.2 0 0 ! " 2 2 V (! ϕ) = (λ − λc )! ϕ +u ϕ ! 2 E(p < p ) c unscaled 0.5 1 1.5 Pressure |(p − pc)| [kbar] 2 Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008) λc O(3) order parameter ϕ ! S= ! " λ CFT3 % $ 2 2 2 2 2 2 2 d rdτ (∂τ ϕ) + c (∇r ϕ $ ) + s$ ϕ +u ϕ $ # Quantum Monte Carlo - critical exponents S. Wenzel and W. Janke, arXiv:0808.1418 M. Troyer, M. Imada, and K. Ueda, J. Phys. Soc. Japan (1997) Quantum Monte Carlo - critical exponents Field-theoretic RG of CFT3 E.Vicari et al. S. Wenzel and W. Janke, arXiv:0808.1418 M. Troyer, M. Imada, and K. Ueda, J. Phys. Soc. Japan (1997) Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Fermi surfaces in electron- and hole-doped cuprates Hole states occupied Γ Electron states occupied Γ Effective Hamiltonian for quasiparticles: ! ! H0 = − tij c†iα ciα ≡ εk c†kα ckα i<j k with tij non-zero for first, second and third neighbor, leads to satisfactory agreement with experiments. The area of the occupied electron states, Ae , from Luttinger’s theory is " 2π 2 (1 − p) for hole-doping p Ae = 2π 2 (1 + x) for electron-doping x The area of the occupied hole states, Ah , which form a closed Fermi surface and so appear in quantum oscillation experiments is Ah = 4π 2 − Ae . Spin density wave theory A spin density wave (SDW) is the spontaneous appearance of an oscillatory spin polarization. The electron spin polarization is written as ! τ) = ϕ S(r, ! (r, τ )eiK·r where ϕ ! is the SDW order parameter, and K is a fixed ordering wavevector. For simplicity we will consider the case of K = (π, π), but our treatment applies to general K. Spin density wave theory In the presence of spin density wave order, ϕ ! at wavevector K = (π, π), we have an additional term which mixes electron states with momentum separated by K ! † Hsdw = ϕ !· ck,α!σαβ ck+K,β k,α,β where !σ are the Pauli matrices. The electron dispersions obtained by diagonalizing H0 + Hsdw for ϕ ! ∝ (0, 0, 1) are "# $ εk + εk+K εk − εk+K Ek± = ± + ϕ2 2 2 This leads to the Fermi surfaces shown in the following slides for electron and hole doping. Spin density wave theory in electron-doped cuprates Increasing SDW order Γ S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Spin density wave theory in electron-doped cuprates Increasing SDW order Γ Γ S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Spin density wave theory in electron-doped cuprates Increasing SDW order Hole pockets Γ Γ Γ Electron pockets S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Spin density wave theory in electron-doped cuprates Increasing SDW order Γ Γ Γ Γ Electron pockets SDW order parameter is a vector, ϕ !, whose amplitude vanishes at the transition to the Fermi liquid. S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Photoemission in NCCO N. P. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002). Spin density wave theory in hole-doped cuprates Increasing SDW order Γ S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Spin density wave theory in hole-doped cuprates Increasing SDW order Γ Γ S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Spin density wave theory in hole-doped cuprates Increasing SDW order Electron pockets Γ Γ Γ Hole pockets S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Spin density wave theory in hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets SDW order parameter is a vector, ϕ !, whose amplitude vanishes at the transition to the Fermi liquid. S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Spin density wave theory In the presence of spin density wave order, ϕ ! at wavevector K = (π, π), we have an additional term which mixes electron states with momentum separated by K ! † Hsdw = ϕ !· ck,α!σαβ ck+K,β k,α,β where !σ are the Pauli matrices. At the quantum critical point for the onset of SDW order, we integrate out the fermions and derive an effective action functional for ϕ !. Spin density wave theory This functional has the form ! 2 ! " # d q dω 2 2 S = |# ϕ (q, ω)| r + q + χ(K, ω) 4π 2 2π ! + u d2 xdτ (# ϕ2 (x, τ ))2 + . . . The susceptibility, χ, has a non-analytic dependence on ω because of Landau damping: χ(K, ω) = χ0 + χ1 |ω| + . . . This leads to a critical point with dynamic critical exponent z = 2, and upper-critical dimension d = 2. Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory X[Pd(dmit)2]2 Pd C S X Pd(dmit)2 t’ t t Half-filled band Mott insulator with spin S = 1/2 Triangular lattice of [Pd(dmit)2]2 frustrated quantum spin system Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) H= H=J ! !ij" ! !ij" !i · S !j + . . . Jij S !i · S !j ; S !i ⇒ spin operator with S = 1/2 S H= H=J ! !ij" ! !ij" !i · S !j + . . . Jij S !i · S !j ; S !i ⇒ spin operator with S = 1/2 S What is the ground state as a function of J /J ? ! Anisotropic triangular lattice antiferromagnet Broken spin rotation symmetry Neel ground state for small J’/J Anisotropic triangular lattice antiferromagnet Possible ground states as a function of J /J ! • Néel antiferromagnetic LRO Magnetic Criticality X[Pd(dmit)2]2 Et2Me2Sb (CO) Me4P TN (K) Me4As EtMe3As Et2Me2P Et2Me2As Me4Sb Neel order EtMe3Sb ! J ! /J Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) Anisotropic triangular lattice antiferromagnet (|↑↓# − |↓↑#) √ = 2 Possible ground state for intermediate J’/J N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989) Anisotropic triangular lattice antiferromagnet Broken lattice space group symmetry (|↑↓# − |↓↑#) √ = 2 Valence bond solid (VBS) Possible ground state for intermediate J’/J N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989) Anisotropic triangular lattice antiferromagnet Broken lattice space group symmetry (|↑↓# − |↓↑#) √ = 2 Valence bond solid (VBS) Possible ground state for intermediate J’/J N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989) Anisotropic triangular lattice antiferromagnet Broken lattice space group symmetry (|↑↓# − |↓↑#) √ = 2 Valence bond solid (VBS) Possible ground state for intermediate J’/J N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989) Anisotropic triangular lattice antiferromagnet Broken lattice space group symmetry (|↑↓# − |↓↑#) √ = 2 Valence bond solid (VBS) Possible ground state for intermediate J’/J N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989) Anisotropic triangular lattice antiferromagnet Possible ground states as a function of J /J ! • Néel antiferromagnetic LRO • Valence bond solid Triangular lattice antiferromagnet Z2 spin liquid = N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991) Triangular lattice antiferromagnet Z2 spin liquid = N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991) Triangular lattice antiferromagnet Z2 spin liquid = N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991) Triangular lattice antiferromagnet Z2 spin liquid = N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991) Triangular lattice antiferromagnet Z2 spin liquid = N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991) Triangular lattice antiferromagnet Z2 spin liquid = N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991) Excitations of the Z2 Spin liquid A spinon = Excitations of the Z2 Spin liquid A spinon = Excitations of the Z2 Spin liquid A spinon = Excitations of the Z2 Spin liquid A spinon = Anisotropic triangular lattice antiferromagnet Possible ground states as a function of J /J ! • Néel antiferromagnetic LRO • Valence bond solid • Z2 spin liquid Magnetic Criticality X[Pd(dmit)2]2 Et2Me2Sb (CO) Me4P TN (K) Me4As EtMe3As Et2Me2P Et2Me2As Me4Sb Neel order EtMe3Sb ! J ! /J Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) Magnetic Criticality X[Pd(dmit)2]2 Et2Me2Sb (CO) Me4P TN (K) Me4As EtMe3P EtMe3As Et2Me2P Et2Me2As Me4Sb Neel order EtMe3Sb ! J ! /J Spin gap Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) Magnetic Criticality X[Pd(dmit)2]2 Et2Me2Sb (CO) Me4P TN (K) Me4As EtMe3P EtMe3As Et2Me2P Et2Me2As Me4Sb Neel order EtMe3Sb ! J ! /J Spin gap VBS order Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) Observation of a valence bond solid (VBS) in ETMe3P[Pd(dmit)2]2 X-ray scattering Spin gap ~ 40 K J ~ 250 K M. Tamura, A. Nakao and R. Kato, J. Phys. Soc. Japan 75, 093701 (2006) Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, Phys. Rev. Lett. 99, 256403 (2007) Magnetic Criticality X[Pd(dmit)2]2 Et2Me2Sb (CO) Me4P TN (K) Me4As EtMe3P EtMe3As Et2Me2P Et2Me2As Me4Sb Neel order EtMe3Sb ! J ! /J Spin gap VBS order Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) Discussion of Schwinger bosons on the square lattice and U(1) gauge theory http://qpt.physics.harvard.edu/leshouches/schwinger_bosons.pdf Schwinger boson mean field theory on the square lattice and perturbative fluctuations Origin of gauge invariance iφ(i) biα → biα e −iφ(j) b̄jα → b̄jα e Qij → Qij ei(φ(i)−φ(j)) → with Qij = |Qij |eiAij , we have Aij → Aij + φ(i) − φ(j) or Ai,i+µ̂ → Ai,i+µ̂ + ∂µ φ Schwinger boson mean field theory on the square lattice and perturbative fluctuations S = ! " d2 xdτ |(∂τ − iAτ )zα |2 + c2 |(∂x − iAx )zα |2 + s|zα |2 # $ 2 2 + u |zα | 1 2 + 2 (#µνλ ∂ν Aλ ) 2e % Schwinger boson mean field theory on the square lattice and perturbative fluctuations S = ! " d2 xdτ |(∂τ − iAτ )zα |2 + c2 |(∂x − iAx )zα |2 + s|zα |2 # $ 2 2 + u |zα | 1 2 + 2 (#µνλ ∂ν Aλ ) 2e % Schwinger boson mean field theory on the square lattice and perturbative fluctuations S = ! " d2 xdτ |(∂τ − iAτ )zα |2 + c2 |(∂x − iAx )zα |2 + s|zα |2 # $ 2 2 + u |zα | 1 2 + 2 (#µνλ ∂ν Aλ ) 2e % Schwinger boson mean field theory on the square lattice and perturbative fluctuations S = ! " d2 xdτ |(∂τ − iAτ )zα |2 + c2 |(∂x − iAx )zα |2 + s|zα |2 # $ 2 2 + u |zα | 1 2 + 2 (#µνλ ∂ν Aλ ) 2e % Nonperturbative effects lead to a gap in Aµ , confinement of zα , and valence bond solid (VBS) order