Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name Class Practice 5-4 Date Factoring Quadratic Expressions © Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved. Factor each expression completely. 1. x2 + 4x + 4 2. x2 - 7x + 10 3. x2 + 7x - 8 4. x2 - 6x 5. 2x2 - 9x + 4 6. x2 + 2x - 35 7. x2 + 6x + 5 8. x2 - 9 9. x2 - 13x - 48 10. x2 - 4 11. 4x2 + x 12. x2 - 29x + 100 13. x2 - x - 6 14. 9x2 - 1 15. 3x2 - 2x 16. x2 - 64 17. x2 - 25 18. x2 - 81 19. x2 - 36 20. x2 - 100 21. x2 - 1 22. 4x2 - 1 23. 4x2 - 36 24. 9x2 - 4 25. x2 - 7x - 8 26. x2 + 13x + 36 27. x2 - 5x + 6 28. x2 + 5x + 4 29. x2 - 21x - 22 30. x2 + 13x + 40 31. 2x2 - 5x - 3 32. x2 + 10x - 11 33. x2 - 14x + 24 34. 5x2 + 4x - 12 35. 2x2 - 5x - 7 36. 2x2 + 13x + 15 37. 3x2 - 7x - 6 38. 3x2 + 16x + 21 39. x2 + 5x - 24 40. x2 + 34x - 72 41. x2 - 11x 42. 3x2 + 21x 43. x2 + 8x + 12 44. x2 - 10x + 24 45. x2 + 7x - 30 46. x2 - 2x - 168 47. x2 - x - 72 48. 4x2 - 25 49. x2 - 121 50. x2 + 17x + 16 51. 10x2 - 17x + 3 52. 4x2 + 12x + 9 53. 4x2 - 4x - 15 54. 9x2 - 4 55. x2 + 6x - 40 56. 2x2 - 8 57. x2 + 18x + 77 58. 2x2 - 98 59. x2 + 21x + 98 60. x2 + 20x + 84 61. 9x2 + 30x + 16 62. 8x2 - 6x - 27 63. x2 - 3x - 54 64. x2 - 169 65. 25x2 - 9 66. 7x2 + 49 67. 2x2 - 10x - 28 68. x2 + 8x + 12 69. x2 - 2x - 35 70. x2 + 2x - 63 71. 20x2 - 11x - 3 72. 12x2 + 4x - 5 73. 4x2 - 5x - 6 74. 8x2 + 22x - 21 75. 3x2 - 3x - 168 Algebra 2 Chapter 5 Lesson 5-4 Practice 5 Name Class Date Practice 6-2 Polynomials and Linear Factors For each function, determine the zeros. State the multiplicity of any multiple zeros. 1. y = (x - 5)3 2. y = x(x - 8)2 3. y = (x - 2)(x + 7)3 4. f(x) = x4 - 8x3 + 16x2 5. f(x) = 9x3 - 81x 6. y = (2x + 5)(x - 3)2 Write each function in standard form. All rights reserved. 7. y = (x - 5)(x + 5)(2x - 1) 8. y = (2x + 1)(x - 3)(5 - x) 9. A rectangular box is 24 in. long, 12 in. wide, and 18 in. high. If each dimension is increased by x in., write a polynomial function in standard form modeling the volume V of the box. Write a polynomial function in standard form with the given zeros. 10. -1, 3, 4 11. 1, 1, 2 12. -3, 0, 0, 5 13. -2 multiplicity 3 Write each expression as a polynomial in standard form. 14. x(x - 1)2 15. (x + 3)2(x + 1) 16. (x + 4)(2x - 5)(x + 5)2 Write each function in factored form. Check by multiplication. 17. y = 2x3 + 10x2 + 12x 18. y = x4 - x3 - 6x2 19. y = -3x3 + 18x2 - 27x © Pearson Education, Inc., publishing as Pearson Prentice Hall. Find the zeros of each function. Then graph the function. 20. y = (x + 1)(x - 1)(x - 3) 21. y = (x + 2)(x - 3) 22. y = x(x - 2)(x + 5) Find the relative maximum, relative minimum, and zeros of each function. 23. f(x) = x3 - 7x2 + 10x 24. f(x) = x3 - x2 - 9x + 9 Write each polynomial in factored form. Check by multiplication. 25. x3 - 6x2 - 16x 26. x3 + 7x2 + 12x 27. x3 - 8x2 + 15x 28. A rectangular box has a square base. The combined length of a side of the square base, and the height is 20 in. Let x be the length of a side of the base of the box. a. Write a polynomial function in factored form modeling the volume V of the box. b. What is the maximum possible volume of the box? Algebra 2 Chapter 6 Lesson 6-2 Practice 3 Name Class Date Practice 6-3 Dividing Polynomials Determine whether each binomial is a factor of x3 ± 3x2 – 10x – 24. 1. x + 4 2. x - 3 3. x + 6 4. x + 2 Divide using synthetic division. 5. (x3 - 8x2 + 17x - 10) (x - 5) 6. (x3 + 5x2 - x - 9) (x + 2) 7. (-2x3 + 15x2 - 22x - 15) (x - 3) 8. (x3 + 7x2 + 15x + 9) (x + 1) 10. (x3 - 5x2 - 7x + 25) (x - 5) 11. (x4 - x3 + x2 - x + 1) (x - 1) 12. ax4 1 53 x3 2 23 x2 1 6x 2 2b 4 ax 2 13 b 13. (x4 - 5x3 + 5x2 + 7x - 12) (x - 4) 14. (2x4 + 23x3 + 60x2 - 125x - 500) (x + 4) Use synthetic division and the Remainder Theorem to find P(a). 15. P(x) = 3x3 - 4x2 - 5x + 1; a = 2 16. P(x) = x3 + 7x2 + 12x - 3; a = -5 17. P(x) = x3 + 6x2 + 10x + 3; a = -3 18. P(x) = 2x4 - 9x3 + 7x2 - 5x + 11; a = 4 All rights reserved. 9. (x3 + 2x2 + 5x + 12) (x + 3) Divide using long division. Check your answers. 19. (x2 - 13x - 48) (x + 3) 20. (2x2 + x - 7) (x - 5) 21. (x3 + 5x2 - 3x - 1) (x - 1) 22. (3x3 - x2 - 7x + 6) (x + 2) 23. y = x3 + 3x2 - 13x - 15; (x + 5) 24. y = x3 - 3x2 - 10x + 24; (x - 2) Divide. 25. (6x3 + 2x2 - 11x + 12) (3x + 4) 26. (x4 + 2x3 + x - 3) (x - 1) 27. (2x4 + 3x3 - 4x2 + x + 1) (2x - 1) 28. (x5 - 1) (x - 1) 29. (x4 - 3x2 - 10) (x - 2) 30. (3x3 2 2x2 1 2x 1 1) 4 ax 1 13 b 31. A box is to be mailed. The volume in cubic inches of the box can be expressed as the product of its three dimensions: V(x) = x3 - 16x2 + 79x - 120. The length is x - 8. Find linear expressions for the other dimensions. Assume that the width is greater than the height. 4 Lesson 6-3 Practice Algebra 2 Chapter 6 © Pearson Education, Inc., publishing as Pearson Prentice Hall. Use synthetic division and the given factor to completely factor each polynomial function.