Download 3 Styles of Proofs 1. Two

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Geometry
Guided Notes
Styles of Proofs
Name: ___________________________
Date: _______________ Period: _____
3 Styles of Proofs
1. Two-Column Proof
a. __________________________________________________________________
b. __________________________________________________________________
2. Flow Proof
a. __________________________________________________________________
b. __________________________________________________________________
3. Paragraph Proof
a. __________________________________________________________________
b. __________________________________________________________________
New Theorems
Theorem: If two lines are perpendicular, then they intersect to form four right angles.
Example:
Theorem: All right angles are congruent.
Example:
Theorem: If two lines intersect to form a pair of adjacent congruent angles, then the lines are
perpendicular.
Example:
Geometry
Guided Notes
Styles of Proofs
Name: ___________________________
Date: _______________ Period: _____
l1
2-Column Proof
(1). Given: l1 l2
Prove: m∡1 = 90°, m∡2 = 90°, m∡3 = 90°, m∡4 = 90°
Statements
1. l1
l2
1 2
3 4
l2
Reasons
1.
2. ∡1 is a right angle
2.
3. m∡1 = 90°
3.
4. m∡1 = m∡4
4.
5. m∡4 = 90°
5.
6. m∡1 + m∡2 = 180°
m∡1 + m∡3 = 180°
6.
7. 90° + m∡2 = 180°
90° + m∡3 = 180°
7.
8. m∡2 = 90°
m∡3 = 90°
8.
Paragraph Proof:
Given: l1 l2
Prove: m∡1 = m∡2 = m∡3 = m∡4 = 90°
We are given that l1
l2. Therefore, we know that ∡1 is a right angle by the definition of
perpendicular lines. By the definition of a right angle, we know that m∡1 = 90°. Since ∡1 and ∡4 are
vertical angles, we know that m∡1 = m∡4 by the Vertical Angle Theorem. Therefore, by the
Substitution Property, m∡4 = 90°. By the Linear Pair Postulate, m∡1 + m∡2 = 180° and m∡1 + m∡3 =
180°. We can substitute 90° for m∡1 using the Substitution Property; 90° + m∡2 = 180° and 90° + m∡3
= 180°. Subtract 90° from both sides of the equation to yield m∡2 = 90° and m∡3 = 90° by the
Subtraction Property of Equality. We have now shown that m∡1 = m∡2 = m∡3 = m∡4 = 90°.
Geometry
Guided Notes
Styles of Proofs
Name: ___________________________
Date: _______________ Period: _____
Flow Proof:
l1 l2
Given
∡1 is a right angle
Def. Of Perpendicular Lines
m∡1 + m∡2 = 180°
m∡1 + m∡3 = 180°
Linear Pair Postulate
m∡1 = 90°
Def. Of Right Angle
m∡1 = m∡4
Vertical Angle Th.
m∡4 = 90°
Substitution
90° + m∡2 = 180°
90° + m∡3 = 180°
Substitution
m∡2 = 90°
m∡3 = 90°
Subtraction POE
Geometry
Guided Notes
Styles of Proofs
Name: ___________________________
Date: _______________ Period: _____
(2). Given: ∡1 and ∡2 are right angles
Prove: ∡1 ≅ ∡2
1
Statements
Reasons
1. ∡1 and ∡2 are right angles
1.
2. m∡1 = 90°
m∡2 = 90°
2.
3. m∡1 = m∡2
3.
4. ∡1 ≅ ∡2
4.
Flow Proof
2
Geometry
Guided Notes
Styles of Proofs
Name: ___________________________
Date: _______________ Period: _____
m
(3). Given: ∡1 ≅ ∡2;
∡1 and ∡2 are a linear pair
Prove: m n
1
Statements
Reasons
1. ∡1 ≅ ∡2
1.
2. ∡1 and ∡2 are linear pair
2.
3. m∡1 + m∡2 = 180°
3.
4. m∡1 + m∡1 = 180°
4.
5. 2(m∡1) = 180°
5.
6. m∡1 = 90°
6.
7. m
7.
n
Flow Proof
2
n
Related documents