Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Geometry Guided Notes Styles of Proofs Name: ___________________________ Date: _______________ Period: _____ 3 Styles of Proofs 1. Two-Column Proof a. __________________________________________________________________ b. __________________________________________________________________ 2. Flow Proof a. __________________________________________________________________ b. __________________________________________________________________ 3. Paragraph Proof a. __________________________________________________________________ b. __________________________________________________________________ New Theorems Theorem: If two lines are perpendicular, then they intersect to form four right angles. Example: Theorem: All right angles are congruent. Example: Theorem: If two lines intersect to form a pair of adjacent congruent angles, then the lines are perpendicular. Example: Geometry Guided Notes Styles of Proofs Name: ___________________________ Date: _______________ Period: _____ l1 2-Column Proof (1). Given: l1 l2 Prove: m∡1 = 90°, m∡2 = 90°, m∡3 = 90°, m∡4 = 90° Statements 1. l1 l2 1 2 3 4 l2 Reasons 1. 2. ∡1 is a right angle 2. 3. m∡1 = 90° 3. 4. m∡1 = m∡4 4. 5. m∡4 = 90° 5. 6. m∡1 + m∡2 = 180° m∡1 + m∡3 = 180° 6. 7. 90° + m∡2 = 180° 90° + m∡3 = 180° 7. 8. m∡2 = 90° m∡3 = 90° 8. Paragraph Proof: Given: l1 l2 Prove: m∡1 = m∡2 = m∡3 = m∡4 = 90° We are given that l1 l2. Therefore, we know that ∡1 is a right angle by the definition of perpendicular lines. By the definition of a right angle, we know that m∡1 = 90°. Since ∡1 and ∡4 are vertical angles, we know that m∡1 = m∡4 by the Vertical Angle Theorem. Therefore, by the Substitution Property, m∡4 = 90°. By the Linear Pair Postulate, m∡1 + m∡2 = 180° and m∡1 + m∡3 = 180°. We can substitute 90° for m∡1 using the Substitution Property; 90° + m∡2 = 180° and 90° + m∡3 = 180°. Subtract 90° from both sides of the equation to yield m∡2 = 90° and m∡3 = 90° by the Subtraction Property of Equality. We have now shown that m∡1 = m∡2 = m∡3 = m∡4 = 90°. Geometry Guided Notes Styles of Proofs Name: ___________________________ Date: _______________ Period: _____ Flow Proof: l1 l2 Given ∡1 is a right angle Def. Of Perpendicular Lines m∡1 + m∡2 = 180° m∡1 + m∡3 = 180° Linear Pair Postulate m∡1 = 90° Def. Of Right Angle m∡1 = m∡4 Vertical Angle Th. m∡4 = 90° Substitution 90° + m∡2 = 180° 90° + m∡3 = 180° Substitution m∡2 = 90° m∡3 = 90° Subtraction POE Geometry Guided Notes Styles of Proofs Name: ___________________________ Date: _______________ Period: _____ (2). Given: ∡1 and ∡2 are right angles Prove: ∡1 ≅ ∡2 1 Statements Reasons 1. ∡1 and ∡2 are right angles 1. 2. m∡1 = 90° m∡2 = 90° 2. 3. m∡1 = m∡2 3. 4. ∡1 ≅ ∡2 4. Flow Proof 2 Geometry Guided Notes Styles of Proofs Name: ___________________________ Date: _______________ Period: _____ m (3). Given: ∡1 ≅ ∡2; ∡1 and ∡2 are a linear pair Prove: m n 1 Statements Reasons 1. ∡1 ≅ ∡2 1. 2. ∡1 and ∡2 are linear pair 2. 3. m∡1 + m∡2 = 180° 3. 4. m∡1 + m∡1 = 180° 4. 5. 2(m∡1) = 180° 5. 6. m∡1 = 90° 6. 7. m 7. n Flow Proof 2 n