Download Trigonometric Functions - Welcome to mathsbank.net

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
SURAJ BHAN DAV PUBLIC SCHOOL
TRIGONOMETRIC FUNCTIONS
____________________________________________________________________________________________________


1. Find the degree measure corresponding to the following radian measures  Use  
 3 
(i) 

 4 
c
c
(ii) 3
 7 
(iii)  

 5 
22 

7 
c
(iv) 1c
2. Find the radian measure corresponding to the following degree measures
(i) 135
(ii) 4330
(iii) 45
(iv) 10045
3. Find the angle between minute hand of a clock and the hour hand when the time is 7:20 AM. Why time
management is important? (Value Based)
4. A railway train is traveling on a circular curve of 1500 metres radius at the rate of 66km/hr. Through what
angle has it turned in 10 seconds?
5. A horse is tied to a post by a rope. If the horse moves along a circular path always keeping the rope tight
and describes 88 metres when it has traced out 72 at the centre, find the length of the rope. Why
should we protect our wild life? (Value Based)
6. Find the value of the following:7
 13 
(i) sin 300
(ii) tan(1410)
(iii) tan135
(iv) tan
(v) sin 

4
 6 
7. If A, B.C and D are the angles of a cyclic quadrilateral then prove that cos A  cos B  cos C  cos D  0
8. Find the value of the (i) sin 75 (ii) cos105 (iii) tan

12
9. Prove that tan 7 A  tan 5 A  tan 2 A  tan 7 A tan 5 A tan 2 A
10. Prove that cotAcot2 A  cot2 Acot3 A  cot3 AcotA  1
11. If cot A cot B  3 ,prove that 2cos  A  B   cos  A  B  (HOTS)
12. If cos(   )  cos       cos      
(HOTS)
13. Prove that
3
then prove that sin   sin   sin   cos   cos   cos   0
2
sin  B  C  sin  C  A  sin  A  B 


0
cos B cos C cos C cos A cos A cos B
14. If cos  α  β  sin  γ  δ   cos  α  β  sin  γ  δ  prove that cotαcotβcotγ  cotδ


then show that (i) 1  tan A1  tan B   2 (ii)  cot A  1 cot B  1  2 (iii)Find tan (HOTS)
4
8
16. If sin   sin   a and cos   cos   b then prove that
15. If A  B 
____________________________________________________________________________________________________
SBDAPS/11/CH3/2015
Page 1 of 5
SURAJ BHAN DAV PUBLIC SCHOOL
TRIGONOMETRIC FUNCTIONS
____________________________________________________________________________________________________
2ab
b2  a 2
(ii) tan      2
(HOTS)
2
2
a  b2
b a
17. Prove that tan 57  tan17  2 tan 40
cos A  sin A
cos A  sin A




18. Prove that (i)
(ii)
 tan   A 
 tan   A 
cos A  sin A
cos A  sin A
4

4

cos 7  sin 7
 tan 38
19. Prove that
cos 7  sin 7
3
20. Prove that sin 20 sin 40 sin 60 sin 80 
16
21. Prove that 4 cos12 cos 48 cos 72  cos 36
(i) cos     
1
22. Prove that sinAsin  60ο  A  sin  60ο  A   sin3 A
4
ο
ο
23. Prove that tanθtan  60  θ  tan  60  θ   tan3θ
sin5 A  sin3 A
 tanA
cos5 A  cos3 A
sinA  sin3 A
 tan2 A
25. Prove that
cosA  cos3 A
24. Prove that
26. Prove that cot4 x  sin5 x  sin3x   cotx  sin5 x  sin3x 
27. Prove that sinx  sin3x  sin5 x  sin7 x  4cosxcos2 xsin4 x
2
2
 α β 
28. Prove that  cosα  cosβ    sinα  sinβ   4sin 2 

 2 
cos4 x  cos3x  cos2 x
 cot3x
29. Prove that
sin4 x  sin3 x  sin2 x
sinA  sin3 A  sin5 A  sin7 A
 tan4 A
30. Prove that
cosA  cos3 A  cos5 A  cos7 A
cos8 Acos5 A  cos12 Acos9 A
 tan4 A
31. Prove that
sin8 Acos5 A  cos12 Asin9 A
cos2 Acos3 A  cos2 Acos7 A  cosAcos10 A
 cot6 Acot5 A
32. Prove that
sin4 Asin3 A  sin2 Asin5 A  sin4 Asin7 A
sinA  sinC
33. If three angles A, B, C are in A.P. prove that cotB 
cosC  cosA
____________________________________________________________________________________________________
SBDAPS/11/CH3/2015
Page 2 of 5
SURAJ BHAN DAV PUBLIC SCHOOL
TRIGONOMETRIC FUNCTIONS
____________________________________________________________________________________________________
 α β  β  γ   γ α 
34. Prove that sinα  sinβ  sinγ  sin  α  β  γ   4sin 
 sin 
 sin 

 2   2   2 
tan  A  B  λ  1
35. If sin2 A  λsin2 B , prove that:

tan  A  B  λ  1
cos  A  B  C   cos   A  B  C   cos  A  B  C   cos  A  B  C 
 cotC (HOTS)
sin  A  B  C   sin   A  B  C   sin  A  B  C   sin  A  B  C 
sin2θ
 tanθ
37. Prove that
1  cos2θ
1  sin2θ  cos2θ
 cotθ
38. Prove that
1  sin2θ  cosθ
cosθ
π θ
39. Prove that
 tan   
1  sinθ
 4 2
36. Prove that
40. Prove that 2  2  2  2cos8θ  2cosθ (HOTS)




2
2
ο
2
ο
41. Prove that cos A  cos A  120  cos A  120 
3
2
42. Prove that cos4 x  1  8sin 2 xcos 2 x
sinx sin3x sin9 x 1


  tan27 x  tanx  (HOTS)
cos3x cos9 x cos27 x 2
sin5 x  2sin3 x  sinx
 tanx
44. Prove that
cos5 x  cosx
sin2n A
2
3
n 1
45. Prove that cosAcos2 Acos2 Acos2 A cos 2 A  n
(HOTS)
2 sinA
4tanθ 1  tan 2θ 
46. Prove that tan4θ 
1  6tan 2θ  tan 4θ
47. Prove that tanα  2tan2α  4tan4α  8cot8α  cotα (HOTS)
43. Prove that
48. Prove that tan

8
 2 1
49. Find the value of sin

8
3 π
x
x
x
50. If cosx   ,  x  π , then find sin cos andtan
5 2
2,
2
2
____________________________________________________________________________________________________
SBDAPS/11/CH3/2015
Page 3 of 5
SURAJ BHAN DAV PUBLIC SCHOOL
TRIGONOMETRIC FUNCTIONS
____________________________________________________________________________________________________
 π A
 π A 1
51. Prove that sin 2     sin 2    
sinA
2
8 2
8 2
π
 2  3  4  6 (HOTS)
52. Prove that cot
24
1
53. Prove that tan144 ο  2  2  3  6 (HOTS)
2
π
3π
5π
7π
 cos 2
 cos 2
2
54. Prove that cos 2  cos 2
8
8
8
8
55. Prove that cos4 A  1  8cos 2 A  8cos 4 A
56. Solve: sin 2 x  cos x  0
57. Solve sin 2 x  sin x  0
58. Solve: cos 5 x  cos 3x  cos x  0
59. Solve: cos 3x  cos x  cos 2 x  0
60. Solve: 2cos 2 x  3sin x  0
61. Solve: sec2 2 x  1  tan 2 x
62. Solve: 3 cos x  sin x  3
63. Solve: cos x  sin x  1
64. Solve: cos x  3 sin x  1
65. In any ABC prove that a sin  B  C   b sin  C  A  c sin  A  B   0
66. In any ABC prove that b cos B  c cos C  a cos  B  C 
b2  c 2
c2  a2
a 2  b2


 0 (HOTS)
cos B  cos C cos C  cos A cos A  cos B
A
 B C   b c 
68. In any ABC prove that sin 

 cos
2
 2   a 
67. In any ABC prove that
2
69. a  cos C  cos B   2  b  c  cos
A
2
A
B
1  tan tan
c
2
2

70. In any ABC prove that
a  b 1  tan A tan B
2
2
A
B
tan  tan
c
2
2

71. In any ABC prove that
A
B
a  b tan  tan
2
2
____________________________________________________________________________________________________
SBDAPS/11/CH3/2015
Page 4 of 5
SURAJ BHAN DAV PUBLIC SCHOOL
TRIGONOMETRIC FUNCTIONS
____________________________________________________________________________________________________


72. In any ABC prove that a 2 sin  B  C   b 2  c 2 sin A
73. In any ABC prove that
b2  c 2 sin  B  C 

a2
sin  B  C 
74. In any ABC prove that
a 2  b2 1  cos  A  B  cos C
(HOTS)

a 2  c 2 1  cos  A  C  cos B
A
B
A
  c  a  cot   a  b  cot  0
2
2
2
cos 2 A cos 2 B 1 1

 2 2
76. In any ABC prove that
a2
b2
a b
77. If a cos A  b cos B then prove that triangle is either isosceles or right angled.
75. In any ABC prove that  b  c  cot
cos A cos B cos C a 2  b 2  c 2
78. In any ABC prove that



a
b
c
2abc
2
2
79. In any ABC prove that b  c cos A  a cos C   c  a
c  b cos A cos B

b  c cos A cos C
C
B

81. In any ABC prove that 2  b cos 2  c cos 2   a  b  c
2
2

A
B
C
2

82. In any ABC prove that 4  bc cos 2  ca cos 2  ab cos 2    a  b  c  (HOTS)
2
2
2

80. In any ABC prove that
 b2  c2 
 c2  a2 
 a 2  b2 
sin
2
A

sin
2
B





 sin 2C  0
2
2
2
 a 
 b

 c

83. In any ABC prove that 
a  b
2
cos 2
C
C
2
  a  b  sin 2  c 2
2
2
84. In any ABC if B  60 , prove that  a  b  c  a  b  c   3ac (HOTS)

86. In any ABC prove that  b





85. In any ABC prove that b 2  c 2  a 2 tan A  c 2  a 2  b 2 tan B  a 2  b 2  c 2 tan C (HOTS)
2
 c 2  cot A   c 2  a 2  cot B   a 2  b 2  cot C  0


87. Draw graph of (i) y  sin  2 x  (ii) y  2 cos 3x (iii) tan  x 



 (iv) cos   x 
4
2

____________________________________________________________________________________________________
SBDAPS/11/CH3/2015
Page 5 of 5
Related documents