Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
SURAJ BHAN DAV PUBLIC SCHOOL TRIGONOMETRIC FUNCTIONS ____________________________________________________________________________________________________ 1. Find the degree measure corresponding to the following radian measures Use 3 (i) 4 c c (ii) 3 7 (iii) 5 22 7 c (iv) 1c 2. Find the radian measure corresponding to the following degree measures (i) 135 (ii) 4330 (iii) 45 (iv) 10045 3. Find the angle between minute hand of a clock and the hour hand when the time is 7:20 AM. Why time management is important? (Value Based) 4. A railway train is traveling on a circular curve of 1500 metres radius at the rate of 66km/hr. Through what angle has it turned in 10 seconds? 5. A horse is tied to a post by a rope. If the horse moves along a circular path always keeping the rope tight and describes 88 metres when it has traced out 72 at the centre, find the length of the rope. Why should we protect our wild life? (Value Based) 6. Find the value of the following:7 13 (i) sin 300 (ii) tan(1410) (iii) tan135 (iv) tan (v) sin 4 6 7. If A, B.C and D are the angles of a cyclic quadrilateral then prove that cos A cos B cos C cos D 0 8. Find the value of the (i) sin 75 (ii) cos105 (iii) tan 12 9. Prove that tan 7 A tan 5 A tan 2 A tan 7 A tan 5 A tan 2 A 10. Prove that cotAcot2 A cot2 Acot3 A cot3 AcotA 1 11. If cot A cot B 3 ,prove that 2cos A B cos A B (HOTS) 12. If cos( ) cos cos (HOTS) 13. Prove that 3 then prove that sin sin sin cos cos cos 0 2 sin B C sin C A sin A B 0 cos B cos C cos C cos A cos A cos B 14. If cos α β sin γ δ cos α β sin γ δ prove that cotαcotβcotγ cotδ then show that (i) 1 tan A1 tan B 2 (ii) cot A 1 cot B 1 2 (iii)Find tan (HOTS) 4 8 16. If sin sin a and cos cos b then prove that 15. If A B ____________________________________________________________________________________________________ SBDAPS/11/CH3/2015 Page 1 of 5 SURAJ BHAN DAV PUBLIC SCHOOL TRIGONOMETRIC FUNCTIONS ____________________________________________________________________________________________________ 2ab b2 a 2 (ii) tan 2 (HOTS) 2 2 a b2 b a 17. Prove that tan 57 tan17 2 tan 40 cos A sin A cos A sin A 18. Prove that (i) (ii) tan A tan A cos A sin A cos A sin A 4 4 cos 7 sin 7 tan 38 19. Prove that cos 7 sin 7 3 20. Prove that sin 20 sin 40 sin 60 sin 80 16 21. Prove that 4 cos12 cos 48 cos 72 cos 36 (i) cos 1 22. Prove that sinAsin 60ο A sin 60ο A sin3 A 4 ο ο 23. Prove that tanθtan 60 θ tan 60 θ tan3θ sin5 A sin3 A tanA cos5 A cos3 A sinA sin3 A tan2 A 25. Prove that cosA cos3 A 24. Prove that 26. Prove that cot4 x sin5 x sin3x cotx sin5 x sin3x 27. Prove that sinx sin3x sin5 x sin7 x 4cosxcos2 xsin4 x 2 2 α β 28. Prove that cosα cosβ sinα sinβ 4sin 2 2 cos4 x cos3x cos2 x cot3x 29. Prove that sin4 x sin3 x sin2 x sinA sin3 A sin5 A sin7 A tan4 A 30. Prove that cosA cos3 A cos5 A cos7 A cos8 Acos5 A cos12 Acos9 A tan4 A 31. Prove that sin8 Acos5 A cos12 Asin9 A cos2 Acos3 A cos2 Acos7 A cosAcos10 A cot6 Acot5 A 32. Prove that sin4 Asin3 A sin2 Asin5 A sin4 Asin7 A sinA sinC 33. If three angles A, B, C are in A.P. prove that cotB cosC cosA ____________________________________________________________________________________________________ SBDAPS/11/CH3/2015 Page 2 of 5 SURAJ BHAN DAV PUBLIC SCHOOL TRIGONOMETRIC FUNCTIONS ____________________________________________________________________________________________________ α β β γ γ α 34. Prove that sinα sinβ sinγ sin α β γ 4sin sin sin 2 2 2 tan A B λ 1 35. If sin2 A λsin2 B , prove that: tan A B λ 1 cos A B C cos A B C cos A B C cos A B C cotC (HOTS) sin A B C sin A B C sin A B C sin A B C sin2θ tanθ 37. Prove that 1 cos2θ 1 sin2θ cos2θ cotθ 38. Prove that 1 sin2θ cosθ cosθ π θ 39. Prove that tan 1 sinθ 4 2 36. Prove that 40. Prove that 2 2 2 2cos8θ 2cosθ (HOTS) 2 2 ο 2 ο 41. Prove that cos A cos A 120 cos A 120 3 2 42. Prove that cos4 x 1 8sin 2 xcos 2 x sinx sin3x sin9 x 1 tan27 x tanx (HOTS) cos3x cos9 x cos27 x 2 sin5 x 2sin3 x sinx tanx 44. Prove that cos5 x cosx sin2n A 2 3 n 1 45. Prove that cosAcos2 Acos2 Acos2 A cos 2 A n (HOTS) 2 sinA 4tanθ 1 tan 2θ 46. Prove that tan4θ 1 6tan 2θ tan 4θ 47. Prove that tanα 2tan2α 4tan4α 8cot8α cotα (HOTS) 43. Prove that 48. Prove that tan 8 2 1 49. Find the value of sin 8 3 π x x x 50. If cosx , x π , then find sin cos andtan 5 2 2, 2 2 ____________________________________________________________________________________________________ SBDAPS/11/CH3/2015 Page 3 of 5 SURAJ BHAN DAV PUBLIC SCHOOL TRIGONOMETRIC FUNCTIONS ____________________________________________________________________________________________________ π A π A 1 51. Prove that sin 2 sin 2 sinA 2 8 2 8 2 π 2 3 4 6 (HOTS) 52. Prove that cot 24 1 53. Prove that tan144 ο 2 2 3 6 (HOTS) 2 π 3π 5π 7π cos 2 cos 2 2 54. Prove that cos 2 cos 2 8 8 8 8 55. Prove that cos4 A 1 8cos 2 A 8cos 4 A 56. Solve: sin 2 x cos x 0 57. Solve sin 2 x sin x 0 58. Solve: cos 5 x cos 3x cos x 0 59. Solve: cos 3x cos x cos 2 x 0 60. Solve: 2cos 2 x 3sin x 0 61. Solve: sec2 2 x 1 tan 2 x 62. Solve: 3 cos x sin x 3 63. Solve: cos x sin x 1 64. Solve: cos x 3 sin x 1 65. In any ABC prove that a sin B C b sin C A c sin A B 0 66. In any ABC prove that b cos B c cos C a cos B C b2 c 2 c2 a2 a 2 b2 0 (HOTS) cos B cos C cos C cos A cos A cos B A B C b c 68. In any ABC prove that sin cos 2 2 a 67. In any ABC prove that 2 69. a cos C cos B 2 b c cos A 2 A B 1 tan tan c 2 2 70. In any ABC prove that a b 1 tan A tan B 2 2 A B tan tan c 2 2 71. In any ABC prove that A B a b tan tan 2 2 ____________________________________________________________________________________________________ SBDAPS/11/CH3/2015 Page 4 of 5 SURAJ BHAN DAV PUBLIC SCHOOL TRIGONOMETRIC FUNCTIONS ____________________________________________________________________________________________________ 72. In any ABC prove that a 2 sin B C b 2 c 2 sin A 73. In any ABC prove that b2 c 2 sin B C a2 sin B C 74. In any ABC prove that a 2 b2 1 cos A B cos C (HOTS) a 2 c 2 1 cos A C cos B A B A c a cot a b cot 0 2 2 2 cos 2 A cos 2 B 1 1 2 2 76. In any ABC prove that a2 b2 a b 77. If a cos A b cos B then prove that triangle is either isosceles or right angled. 75. In any ABC prove that b c cot cos A cos B cos C a 2 b 2 c 2 78. In any ABC prove that a b c 2abc 2 2 79. In any ABC prove that b c cos A a cos C c a c b cos A cos B b c cos A cos C C B 81. In any ABC prove that 2 b cos 2 c cos 2 a b c 2 2 A B C 2 82. In any ABC prove that 4 bc cos 2 ca cos 2 ab cos 2 a b c (HOTS) 2 2 2 80. In any ABC prove that b2 c2 c2 a2 a 2 b2 sin 2 A sin 2 B sin 2C 0 2 2 2 a b c 83. In any ABC prove that a b 2 cos 2 C C 2 a b sin 2 c 2 2 2 84. In any ABC if B 60 , prove that a b c a b c 3ac (HOTS) 86. In any ABC prove that b 85. In any ABC prove that b 2 c 2 a 2 tan A c 2 a 2 b 2 tan B a 2 b 2 c 2 tan C (HOTS) 2 c 2 cot A c 2 a 2 cot B a 2 b 2 cot C 0 87. Draw graph of (i) y sin 2 x (ii) y 2 cos 3x (iii) tan x (iv) cos x 4 2 ____________________________________________________________________________________________________ SBDAPS/11/CH3/2015 Page 5 of 5