Download Trigonometry and Pre-Calculus Formula Sheet

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Formulas from Trigonometry
opp y
=
hyp r
adj x
cosθ=
=
hyp r
opp y sin θ
tan θ=
= =
adj x cosθ
hyp
1
csc θ=
=
opp sin θ
hyp
1
secθ=
=
adj cosθ
adj
1
cosθ
cot θ=
=
=
opp tan θ sin θ
2
2
sin θ+ cos θ=1
2
2
1+ tan θ= sec θ
2
2
1+ cot θ=csc θ
(cos(θ), sin(θ))
sin θ=
Addition Formulas
sin (α+ β)=sin α cos β+ sin βcos α
cos(α+ β)=cos α cosβ−sin α sin β
sin ( α+β) tan α+tan β
tan (α +β)=
=
cos( α+β) 1−tan α tan β
Subtraction Formulas
sin (α−β)=sin α cosβ−sin βcos α
cos(α−β)=cosα cosβ+ sin α sin β
sin (α−β) tan α−tan β
tan (α−β)=
=
cos(α−β) 1+tan α tan β
Half-Angle Formulas
√
√
1−cos α
sin α =±
2
2
1+
cos α
cos α =±
2
2
1−cosα
sin α
tan α =
=
2
sin α
1+cosα
( )
( )
( )
Sine Graph
Quadratic Formula
2
if a x + b x+ c=0 then
−b± √b2 −4a c
x=
2a
−b
−b
vertex =
,f
=(h , k )
2a
2a
( ( ))
Double Angle Formulas
sin 2 α=2 sin α cosα
2
2
cos 2 α=cos α−sin α
2
= 1−2 sin α
= 2 cos2 α−1
2 tan α
tan 2α=
2
1− tan α
2
y= a ( x−h ) + k
Cosine Graph
(x +2 x , y +2 y )
2
1
2
2
2
x − y =( x+ y)( x− y)
2
2
2
x ±2 x y+ y =( x± y)
3
3
2
2
x ± y =( x± y)( x ∓ x y+ y )
2
Tangent Graph
Circular Sector
s= r θ
1
Factoring Formulas
Law of Cosines
2
d = √( x1 −x 2 )2+ ( y 1− y2 )2
midpoint =
sin α sin β sin γ
=
=
a
b
c
2
Distance Formula
Midpoint Formula
Law of Sines
a =b +c −2 b c cosα
2
2
2
b = a + c −2 a c cosβ
2
2
2
c =a + b −2 a b cos γ
Formulas From Algebra
1
A= r 2 θ
2
Constants
π=3.141592653589793238462643
e=2.718281828459045235360287
ϕ=1.618033988749894848204586
Trigonometry and Pre-Calculus Formula Sheet – University of Georgia Division of Academic Enhancement
Associative Property
a+ (b + c)=( a+ b)+ c
a(b c)=(a b) c
Commutative Property
a+ b=b+ a
a b=b a
Distributive Property
a(b+ c)=a b+ a c
Exponents and Radicals
x
y
x+ y
A=l w
Circle
A= π r
f ( x)= x
P=2 l +2 w
2
C=2 π r
Right Circular Cone
1 2
1
V = π r h= Abase h
3
3
2
2
S = π r √r + h
1
x
√x a y=a
Common Function Graphs
Rectangle
()
a x =√ a
Trapezoid
1
A= (a +b) h
2
a ∗a =a
x y
xy
(a ) =a
x
x x
(a b) =a b
x
x
a
a
= x
b
b
x
a
=a x−y
ay
1
a−x = x
a
f ( x)= x
Sphere
y
x
4
V = π r3
3
Line Equations
y 2− y1
x 2− x 1
y=m x+ b
y− y1= m( x− x1 )
S=4π r
2
2
Rectangular Box
m=
V =l w h
S = 2 h l +2 l w+ 2 h w
Right Circular Cylinder
Circle Equations
Center=(h, k) radius=r :
2
2
2
( x−h) + ( y−k ) =r
2
2
y= k± √r −( x−h)
Exponentials and Logarithms
y
y=log b x ⇔ b = x
log( x y)=log ( x)+ log( y)
x
log
=log x−log y
y
a
log (x )=a log( x)
()
2
V =π r h
S = 2 π r h +2 π r
2
Circular Sector
s= r θ
f ( x)= x
3
1
A= r 2 θ
2
Parallelogram
A= bh= absin (θ)
Inverse Trigonometry Functions
f ( x)=arcsin ( x)
loga ( x )
a
=x
x
log a (a )= x
log(1)=0
ln (e)=1
log a (a)=1
log (x)=log 10( x)
ln ( x)=log e ( x)
log( x) ln ( x)
log b ( x)=
=
log(b) ln (b)
f ( x)=∣x∣
f ( x)=arccos( x)
Function Modifications
g( x)=a∗f (b∗x−c )+d
a= vertical stretch
b= horizontal squeeze
c=horizontal shift
d=vertical shift
f ( x)= √x
Formulas from Geometry
Right Triangle
2
2
c =a +b
2
1
A= a b
2
f ( x)=arctan ( x)
Equilateral Triangle
√3 s
√3 s 2
h=
A=
2
4
Triangle
1
1
A= b h= a b sin (θ)
2
2
Trigonometry and Pre-Calculus Formula Sheet – University of Georgia Division of Academic Enhancement
Related documents