Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
fo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keA iq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /keZ iz.ksrk ln~xq# Jh j.kNksM+nklth egkjkt STUDY PACKAGE Subject : Mathematics Topic: Trigonometric Equation & Properties & Solution of Triangle Index 1. Theory 2. Short Revision 3. Exercise 4. Assertion & Reason 5. Que. from Compt. Exams ® ENJOY MATHEMATICS WITH SUHAAG SIR Student’s Name :______________________ Class :______________________ Roll No. :______________________ Head Office: 243-B, III- Floor, Near Hotel Arch Manor, Zone-I M.P. NAGAR, Main Road, Bhopal !:(0755) 32 00 000, 98930 58881 Free Study Package download from website : www.iitjeeiitjee.com, www.tekoclasses.com An equation involving one or more trigonometric ratios of an unknown angle is called a trigonometric equation. Solution of Trigonometric Equation : A solution of trigonometric equation is the value of the unknown angle that satisfies the equation. π 3π 9π 11π 1 ⇒ θ= , , , , ........... e.g. if sinθ = 4 4 4 4 2 Thus, the trigonometric equation may have infinite number of solutions (because of their periodic nature) and can be classified as : (i) Principal solution (ii) General solution. 2.1 Principal solutions: The solutions of a trigonometric equation which lie in the interval [0, 2π) are called Principal solutions. 1 e.g Find the Principal solutions of the equation sinx = . 2 Solution. 1 2 ∵ there exists two values π 5π 1 and which lie in [0, 2π) and whose sine is i.e. 6 6 2 π 1 ∴ Principal solutions of the equation sinx = are , 6 2 General Solution : ∵ 2.2 sinx = 5π Ans. 6 The expression involving an integer 'n' which gives all solutions of a trigonometric equation is called General solution. General solution of some standard trigonometric equations are given below. 3. General Solution of Some Standard Trigonometric Equations : (i) If sin θ = sin α ⇒ θ = n π + (−1)n α (ii) If cos θ = cos α ⇒ θ = 2nπ ± α (iii) If tan θ = tan α ⇒ θ = nπ + α (iv) If sin² θ = sin² α ⇒ θ = n π ± α, n ∈ Ι. (v) If cos² θ = cos² α ⇒ θ = n π ± α, n ∈ Ι. (vi) If tan² θ = tan² α Some Important deductions : (i) sinθ = 0 ⇒ (ii) sinθ = 1 ⇒ (iii) sinθ = – 1 ⇒ (iv) cosθ = 0 ⇒ (v) (vi) (vii) cosθ = 1 cosθ = – 1 tanθ = 0 ⇒ ⇒ ⇒ Solved Example # 1 Solve sin θ = Solution. 3 . 2 ⇒ θ = n π ± α, n ∈ Ι. θ = nπ, n∈Ι π ,n ∈ Ι 2 π θ = (4n – 1) , n ∈ Ι 2 π θ = (2n + 1) , n ∈ Ι 2 θ = 2nπ, n∈Ι θ = (2n + 1)π, n ∈ Ι θ = nπ, n∈Ι θ = (4n + 1) π π where α ∈ − , , 2 2 where α ∈ [0, π], π π where α ∈ − , , 2 2 n ∈ Ι. n ∈ Ι. n ∈ Ι. [ Note: α is called the principal angle ] 98930 58881 2. Trigonometric Equation : TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 1. Page : 2 of 29 Trigonometric Equation ⇒ ∴ 3 2 π sinθ = sin 3 Page : 3 of 29 ∵ sin θ = θ = nπ π + (– 1)n π ,n∈Ι 3 Ans. Solved Example # 2 2 Solve sec 2θ θ=– ∵ sec 2θ = – ⇒ cos2θ = – 2 3 3 2 ⇒ 5π ,n∈Ι 6 5π θ = nπ π± ,n∈Ι 12 ⇒ cos2θ = cos 5π 6 Ans. Solved Example # 3 Solve tanθ θ=2 Solution. ∵ tanθ = 2 ............(i) Let 2 = tanα ⇒ tanθ = tanα ⇒ θ = nπ π + α , where α = tan –1(2), n ∈ Ι Self Practice Problems: 1. Solve cotθ = – 1 Solve cos3θ = – Ans. (1) 1 2 θ = nπ – π ,n∈Ι 4 (2) 2nπ 2π ± ,n∈Ι 3 9 Solved Example # 4 Solve cos2θ = Solution. ∵ cos2θ = 1 2 1 2 2 1 ⇒ cos θ = 2 π ⇒ cos2θ = cos2 4 π θ = nπ π± ⇒ , n ∈ Ι Ans. 4 Solved Example # 5 2 Solve 4 tan2θ = 3sec2θ Solution. ∵ 4 tan2θ = 3sec2θ .............(i) π For equation (i) to be defined θ ≠ (2n + 1) , n ∈ Ι 2 ∵ equation (i) can be written as: 4 sin2 θ cos θ 2 = 3 cos 2 θ ⇒ 4 sin2θ = 3 ⇒ 3 sin θ = 2 2 2 ∵ θ ≠ (2n + 1) ∴ cos2θ ≠ 0 π ,n∈Ι 2 TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 2θ = 2nπ ± ⇒ 2. 98930 58881 3 Solution. Page : 4 of 29 π 3 π π± , n ∈ Ι Ans. θ = nπ 3 sin2θ = sin2 ⇒ Self Practice Problems : 1. Solve 7cos2θ + 3 sin2θ = 4. 2. Solve 2 sin2x + sin22x = 2 π (1) nπ ± , n ∈ Ι 3 Ans. (2) (2n + 1) π ,n∈Ι 2 or nπ ± π ,n∈Ι 4 Types of Trigonometric Equations : Type -1 Trigonometric equations which can be solved by use of factorization. 98930 58881 ⇒ Solve (2sinx – cosx) (1 + cosx) = sin2x. Solution. ∵ ⇒ ⇒ ⇒ ⇒ + cosx) = sin2x + cosx) – sin2x = 0 + cosx) – (1 – cosx) (1 + cosx) = 0 – 1) = 0 or 2sinx – 1 = 0 1 ⇒ cosx = – 1 or sinx = 2 π ⇒ x = (2n + 1)π, n ∈ Ι or sin x = sin 6 ∴ Solution of given equation is π π, n ∈ Ι π + (–1)n (2n + 1)π or nπ ,n∈Ι 6 Self Practice Problems : (2sinx – cosx) (1 (2sinx – cosx) (1 (2sinx – cosx) (1 (1 + cosx) (2sinx 1 + cosx = 0 Solve cos3x + cos2x – 4cos2 2. Solve cot2θ + 3cosecθ + 3 = 0 Ans. (1) Type - 2 π ,n∈Ι 6 Ans. x =0 2 1. (2) ⇒ x = nπ + (– 1)n (2n + 1)π, n ∈ Ι π 2nπ – , n ∈ Ι or 2 nπ + (–1)n + 1 π ,n∈Ι 6 Trigonometric equations which can be solved by reducing them in quadratic equations. Solved Example # 7 Solve Solution. ∵ ⇒ ⇒ 2 cos2x + 4cosx = 3sin2x ∵ 2cos2x + 4cosx – 3sin2x = 0 2cos2x + 4cosx – 3(1– cos2x) = 0 5cos2x + 4cosx – 3 = 0 − 2 + 19 cos x − − 2 − 19 cos x − = 0 5 5 cosx ∈ [– 1, 1] ∀ x ∈ R ∴ cosx ≠ ⇒ ∴ ........(ii) − 2 − 19 5 equation (ii) will be true if cosx = − 2 + 19 5 − 2 + 19 5 − 2 + 19 , n ∈ Ι α = cos –1 5 ⇒ cosx = cosα, where cosα = ⇒ x = 2nπ π±α where Ans. TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG Solved Example # 6 Ans. 4cosθ – 3secθ = tanθ π (1) 2nπ ± , n ∈ Ι 3 (2) Type - 3 1 = 0 cos2θ – ( 2 + 1) cos θ − 2 Page : 5 of 29 Solve Solve π ,n∈Ι 4 − 1 − 17 ,n∈Ι nπ + (– 1)n α where α = sin–1 8 − 1 + 17 , n ∈Ι or nπ + (–1) n β where β = sin–1 8 or 2nπ ± Trigonometric equations which can be solved by transforming a sum or difference of trigonometric ratios into their product. Solved Example # 8 Solve cos3x + sin2x – sin4x = 0 Solution. ⇒ ⇒ ⇒ ⇒ ∴ cos3x + sin2x – sin4x = 0 cos3x – 2cos3x.sinx = 0 cos3x = 0 π 3x = (2n + 1) , n ∈ Ι 2 π x = (2n + 1) , n ∈ Ι 6 solution of given equation is π (2n + 1) ,n∈Ι or 6 ⇒ ⇒ or cos3x + 2cos3x.sin(– x) = 0 cos3x (1 – 2sinx) = 0 1 – 2sinx = 0 1 sinx = 2 π x = nπ + (–1)n , n ∈ Ι 6 or or nπ π + (–1)n π ,n∈Ι 6 Ans. Self Practice Problems : 1. Solve sin7θ = sin3θ + sinθ 2. Solve 5sinx + 6sin2x +5sin3x + sin4x = 0 3. Solve cosθ – sin3θ = cos2θ nπ (1) ,n∈Ι 3 nπ ,n∈Ι (2) 2 2nπ (3) ,n∈Ι 3 Ans. or or or π nπ ± ,n∈Ι 2 12 2π 2nπ ± ,n∈Ι 3 π 2nπ – , n ∈ Ι 2 or nπ + π ,n∈Ι 4 Type - 4 Trigonometric equations which can be solved by transforming a product of trigonometric ratios into their sum or difference. Solved Example # 9 Solve sin5x.cos3x = sin6x.cos2x Solution. ∵ sin5x.cos3x = sin6x.cos2x ⇒ ⇒ sin8x + sin2x = sin8x + sin4x ⇒ ⇒ 2sin2x.cos2x – sin2x = 0 ⇒ ⇒ sin2x = 0 or 2cos2x – 1 = 0 1 ⇒ 2x = nπ, n ∈ Ι or cos2x = 2 π nπ ⇒ x= , n ∈ Ι or 2x = 2nπ ± , n ∈ Ι 3 2 π ⇒ x = nπ ± , n ∈ Ι 6 ∴ Solution of given equation is π nπ π± ,n∈Ι or nπ ,n∈Ι 6 2 Type - 5 2sin5x.cos3x = 2sin6x.cos2x sin4x – sin2x = 0 sin2x (2cos2x – 1) = 0 Ans. Trigonometric Equations of the form a sinx + b cosx = c, where a, b, c ∈ R, can be solved by dividing both sides of the equation by a2 + b2 . 98930 58881 2. 1. TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG Self Practice Problems : 2 Solution. sinx + cosx = a = 1, b = 1. ∴ divide both sides of equation (i) by 1 1 sinx . + cosx. =1 2 2 π π sinx.sin + cosx.cos =1 4 4 π cos x − = 1 4 ⇒ ⇒ ⇒ ⇒ ∴ 2 ..........(i) 2 , we get 98930 58881 ∵ Here π = 2nπ, n ∈ Ι 4 π x = 2nπ + , n ∈ Ι 4 Solution of given equation is π π+ 2nπ ,n∈Ι Ans. 4 x– Note : Trigonometric equation of the form a sinx + b cosx = c can also be solved by changing sinx and cosx into their corresponding tangent of half the angle. Solved Example # 11 Solve 3cosx + 4sinx = 5 Solution. ∵ ∵ ∴ ⇒ Let ∴ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ 3cosx + 4sinx = 5 .........(i) x x 2 tan 1 − tan 2 2 2 cosx = & sinx = x x 1 + tan 2 1 + tan 2 2 2 equation (i) becomes x 2 x 2 tan 1 − tan 2 2 +4 =5 ........(ii) 3 2 x 2 x 1 tan + 1 tan + 2 2 x tan =t 2 equation (ii) becomes 1− t 2 2t + 4 =5 3 2 1+ t2 1+ t 4t2 – 4t + 1 = 0 (2t – 1)2 = 0 1 x t= ∵ t = tan 2 2 x 1 tan = 2 2 x 1 tan = tanα, where tanα = 2 2 x = nπ + α 2 1 π + 2α α where α = tan–1 , n ∈ Ι x = 2nπ 2 Self Practice Problems : 1. Solve 3 cosx + sinx = 2 Ans. TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG Solve sinx + cosx = Page : 6 of 29 Solved Example # 10 x =0 2 π 2nπ + ,n∈Ι 6 Solve sinx + tan Ans. (1) (2) Page : 7 of 29 2. x = 2nπ, n ∈ Ι Type - 6 Trigonometric equations of the form P(sinx ± cosx, sinx cosx) = 0, where p(y, z) is a polynomial, can be solved by using the substitution sinx ± cosx = t. Solve sinx + cosx = 1 + sinx.cosx Solution. ∵ Let ⇒ sinx + cosx = 1 + sinx.cosx sinx + cosx = t sin2x + cos 2x + 2 sinx.cosx = t 2 ⇒ sinx.cosx = Now put ........(i) t2 − 1 2 sinx + cosx = t t2 − 1 2 t2 – 2t + 1 = 0 t=1 sinx + cosx = 1 and sinx.cosx = t2 − 1 in (i), we get 2 t=1+ ⇒ ⇒ ⇒ ∵ t = sinx + cosx .........(ii) divide both sides of equation (ii) by 2 , we get 1 1 1 + cosx. = ⇒ sinx. 2 2 2 ⇒ ⇒ (i) (ii) π π cos x − = cos 4 4 π π x– = 2nπ ± 4 4 if we take positive sign, we get π π+ x = 2nπ ,n∈Ι Ans. 2 if we take negative sign, we get π, n ∈ Ι x = 2nπ Ans. Self Practice Problems: 1. Solve sin2x + 5sinx + 1 + 5cosx = 0 2. Solve 3cosx + 3sinx + sin3x – cos3x = 0 3. Solve (1 – sin2x) (cosx – sinx) = 1 – 2sin2x. π π (1) nπ – , n ∈ Ι (2) nπ – , n ∈ Ι 4 4 π (3) 2nπ + ,n∈Ι or 2nπ, n ∈ Ι or 2 Ans. Type - 7 nπ + π ,n∈Ι 4 Trigonometric equations which can be solved by the use of boundness of the trigonometric ratios sinx and cosx. Solved Example # 13 x x Solve sinx cos − 2 sin x + 1 + sin − 2 cos x cos x = 0 4 4 Solution. x x ∵ sinx cos − 2 sin x + 1 + sin − 2 cos x cos x = 0 .......(i) 4 4 ⇒ ⇒ ⇒ x x – 2sin2x + cosx + sin .cosx – 2cos 2x = 0 4 4 x x sin x. cos + sin . cos x – 2 (sin2x + cos2x) + cosx = 0 4 4 sinx.cos sin 5x + cosx = 2 4 ........(ii) TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 98930 58881 Solved Example # 12 Page : 8 of 29 and cosx = 1 x = 2mπ, m ∈ Ι and x = 2mπ, m ∈ Ι ........(iv) 98930 58881 and – 4, p ∈ Ι ∴ general solution of given equation can be obtained by substituting either m = 4p – 3 in equation (iv) or n = 5p – 4 in equation (iii) ∴ general solution of equation (i) is π, p ∈ Ι (8p – 6)π Ans. Self Practice Problems : 1. Solve sin3x + cos2x = – 2 2. Solve 3 sin 5 x − cos 2 x − 3 = 1 – sinx π (2) (1) (4p – 3) , p ∈ Ι 2 Ans. 2mπ + π ,m∈Ι 2 Exercise -1 Part : (A) Only one correct option 1. The solution set of the equation 4sinθ.cosθ – 2cosθ – 2 3 sinθ + 3 = 0 in the interval (0, 2π) is 3π 7π (A) , 4 4 2. 2π ,n∈Ι 3 (C) nπ or m π ± 5. π where n, m ∈ Ι 3 If 20 sin2 θ + 21 cos θ − 24 = 0 & (A) 3 4. π 5π 3π (C) , π, , 4 3 3 π 5 π 11π , (D) , 6 6 6 All solutions of the equation, 2 sinθ + tanθ = 0 are obtained by taking all integral values of m and n in: (A) 2nπ + 3. π 5π (B) , 3 3 (B) (B) nπ or 2m π ± 2π where n, m ∈ Ι 3 (D) nπ or 2m π ± π where n, m ∈ Ι 3 7π θ < θ < 2π then the values of cot is: 4 2 15 3 (C) − 15 3 The general solution of sinx + sin5x = sin2x + sin4x is: (A) 2 nπ ; n ∈ Ι (B) nπ ; n ∈ Ι (C) nπ/3 ; n ∈ Ι A triangle ABC is such that sin(2A + B) = (D) − 3 (D) 2 nπ/3 ; n ∈ Ι 1 . If A, B, C are in A.P. then the angle A, B, C are 2 respectively. (A) 5π π π , , 12 4 3 (B) π π 5π , , 4 3 12 (C) π π 5π , , 3 4 12 (D) π 5π π , , 3 12 4 TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG Now equation (ii) will be true if 5x sin =1 4 π 5x = 2nπ + ,n∈Ι ⇒ 2 4 (8n + 2)π ⇒ x = ,n∈Ι ........(iii) 5 Now to find general solution of equation (i) (8n + 2)π = 2mπ 5 ⇒ 8n + 2 = 10m 5m − 1 ⇒ n= 4 if m=1 then n=1 if m=5 then n=6 ......... ......... ......... ......... ......... ......... if m = 4p – 3, p ∈ Ι then n = 5p 8. (D) 7 If sin θ + 7 cos θ = 5, then tan (θ/2) is a root of the equation (B) 6x2 − x − 1 = 0 (C) 6x 2 + x + 1 = 0 (A) x2 − 6x + 1 = 0 (D) x2 − x + 6 = 0 sin 3 θ − cos 3 θ cos θ − − 2 tan θ cot θ = − 1 if: sin θ − cos θ 1 + cot 2 θ (A) θ ∈ 0 , π 2 π , π 2 (B) θ ∈ (C) θ ∈ π , 3π , 2 π 2 3π 2 (D) θ ∈ 9. The number of integral values of a for which the equation cos 2x + a sin x = 2a − 7 possesses a solution is (A) 2 (B) 3 (C) 4 (D) 5 10. The principal solution set of the equation, 2 cos x = 2 + 2 sin 2 x is π 13 π (A) , 8 8 11. π 13 π (B) , 4 8 π 13 π (C) , 4 10 π 13 π (D) , 8 10 The number of all possible triplets (a1, a2, a 3) such that : a 1 + a2 cos 2x + a 3 sin2x = 0 for all x is (A) 0 (B) 1 (C) 2 (D) infinite 12. nπ If 2tan2x – 5 secx – 1 = 0 has 7 different roots in 0, , n ∈ N, then greatest value of n is 2 (A) 8 (B) 10 (C) 13 (D) 15 13. The solution of |cosx| = cosx – 2sinx is (A) x = nπ, n ∈ Ι (C) x = nπ + (–1)n (B) x = nπ + π ,n∈Ι 4 π ,n∈Ι 4 (D) (2n + 1)π + π ,n∈Ι 4 14. The arithmetic mean of the roots of the equation 4cos3x – 4cos2x – cos(π + x) – 1 = 0 in the interval [0, 315] is equal to (A) 49π (B) 50π (C) 51π (D) 100π 15. Number of solutions of the equation cos 6x + tan2 x + cos 6x . tan2 x = 1 in the interval [0, 2π] is : (A) 4 (B) 5 (C) 6 (D) 7 Part : (B) May have more than one options correct 16. sinx − cos 2x − 1 assumes the least value for the set of values of x given by: (B) x = nπ + (−1) n (π/6) , n ∈ Ι (A) x = nπ + (−1)n+1 (π/6) , n ∈ Ι n (C) x = nπ + (−1) (π/3), n ∈ Ι (D) x = nπ − (−1)n (π/6) , n ∈ Ι 17. cos4x cos8x − cos5x cos9x = 0 if (A) cos12x = cos 14 x (C) sinx = 0 18. The equation 2sin (A) sin2x = 1 19. 20. Page : 9 of 29 (C) 5 (B) sin13 x = 0 (D) cosx = 0 x x . cos2x + sin 2x = 2 sin . sin2x + cos2x has a root for which 2 2 1 1 (B) sin2x = – 1 (C) cosx = (D) cos2x = – 2 2 sin 2x + 2 sin x cos x − 3cos2x = 0 if (A) tan x = 3 (C) x = nπ + π/4, n ∈ Ι (B) tanx = − 1 (D) x = nπ + tan −1 (−3), n ∈ Ι sin 2x − cos 2x = 2 − sin 2x if (A) x = nπ/2, n ∈ Ι (C) x = (2n + 1) π/2, n ∈ Ι (B) x = nπ − π/2, n ∈ Ι (D) x = nπ + (−1) n sin−1 (2/3), n ∈ Ι 98930 58881 7. The maximum value of 3sinx + 4cosx is (A) 3 (B) 4 TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 6. Solve cotθ = tan8θ x x cot – cosec = cotx 2 2 2. Solve 3. Solve 1 cotθ + 1 = 0. cot 2θ + 3 + 3 4. Solve cos2θ + 3 cosθ = 0. 5. Solve the equation: sin 6x = sin 4x − sin 2x . 6. Solve: cos θ + sin θ = cos 2 θ + sin 2 θ . 7. Solve 4 sin x . sin 2x . sin 4x = sin 3x . 8. Solve sin 2nθ – sin2(n – 1)θ = sin2θ, where n is constant and n ≠ 0, 1 9. Solve tanθ + tan2θ + 10. Solve: sin 3 x cos 3 x + cos3 x sin 3 x + 0.375 = 0 11. sin 3 x − cos 3 x cos x 2 2 = Solve the equation, . 3 2 + sin x 12. Solve the equation: sin 5x = 16 sin5 x . 13. If tan θ + sin φ = 14. Solve for x, the equation 15. Find the general solution of sec 4 θ − sec 2 θ = 2 . 16. Solve the equation 17. Solve for x: 2 sin 3 x + 18. Solve the equation for 0 ≤ θ ≤ 2 π; sin 2θ + 3 cos2θ 19. Solve: tan 2 x . tan 2 3 x . tan 4 x = tan2 x − tan2 3 x + tan 4 x . 20. Find the values of x, between 0 & 2 π, satisfying the equation; cos 3x + cos 2x = sin 21. Solve: cos 22. Solve the equation, sin2 4 x + cos2 x = 2 sin 4 x cos4 x . 3. 7 3 & tan² θ + cos² φ = then find the general value of θ & φ . 4 2 13 − 18 tan x = 6 tan x − 3, where − 2 π < x < 2 π . 3 sin x − cos x = cos² x . 2 π = 4 1 + 8 sin 2 x . cos 2 2 x . ( ) 2 π − 5 = cos − 2θ . 6 2x cos 6 x = − 1 . 3 3x x + sin . 2 2 TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 3 tanθ tan2θ = 98930 58881 1. Page : 10 of 29 Exercise -2 Page : 11 of 29 ANSWER EXERCISE 1 3. D 4. C 5. B 6. C 7. B 8. 11. D 12. D 13. D 14. C 15. D 16. AD 17. ABC B 9. 18. ABCD D 10. A 19. CD 98930 58881 2. B 20. BC EXERCISE 2 1. 1 π n + , n ∈ Ι 2 9 3. θ = nπ – 5. π π , n ∈ Ι or nπ – , n ∈ Ι 3 6 π nπ , n ∈ Ι or n π ± , n ∈ Ι 6 4 7. x = n π, n ∈ Ι or 9. 13. θ = n π + π ,n∈Ι 2 π π , φ = n π + (−1) n , n ∈ I 4 6 2nπ π π ± or 2nπ ± , n ∈ Ι 5 10 2 17. (24" + 1) 19. π nπ ± , n∈Ι 9 3 1 π n + ,n∈Ι 3 3 11. x = (4 n + 1) 15. 2. x = 4nπ ± 21. φ 17 − 3 , n ∈ Ι 4. 2nπ ± α where α = cos–1 4 2nπ π + , n∈Ι 3 6 6. 2 n π, n ∈ Ι or 8. mπ, m ∈ Ι or 10. x = 1 π mπ , m ∈ Ι or m + ,m∈Ι 2 n n −1 nπ π + (− 1)n + 1 , n∈Ι 4 24 12. x = n π ; x = n π ± π ,n∈Ι 6 14. α − 2 π; α − π, α, α + π, where tan α = 16. x = (2 n + 1)π, , n ∈ Ι π π , " ∈ Ι or x = (24k – 7) , k∈Ι 12 12 (2 n + 1) π , k π, where n, k ∈ Ι 4 2π ,n∈Ι 3 20. 18. θ= 7 π 19 π , 12 12 π 5π 9 π 13 π , ,π, , 7 7 7 7 22. x = (2 n + 1) π , n∈I 2 or 2 3 2nπ ± π , n∈ Ι 3 TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 1. D 1. Sine Rule: In any triangle ABC, the sines of the angles are proportional to the opposite sides i.e. a b c = = . sin A sin B sin C = 98930 58881 Solution. k(sin A + sin B) k sin C C A −B cos 2 2 = C C sin cos 2 2 = R.H.S. Hence L.H.S. = R.H.S. Proved In any ∆ABC, prove that (b2 – c2) cot A + (c2 – a 2) cot B + (a2 – b 2) cot C = 0 ∵ We have to prove that (b2 – c2) cot A + (c2 – a 2) cot B + (a2 – b 2) cot C = 0 ∵ from sine rule, we know that a = k sinA, b = k sinB and c = k sinC ∴ (b2 – c2) cot A = k2 (sin2B – sin2C) cot A ∵ sin 2B – sin2C = sin (B + C) sin (B – C) ∴ (b2 – c2) cot A = k2 sin (B + C) sin (B – C) cotA cos A ∴ (b2 – c2) cot A = k2 sin A sin (B – C) sin A = – k2 sin (B – C) cos (B + C) cos Example : Solution. k2 [2sin (B – C) cos (B + C)] 2 k2 ⇒ (b2 – c2) cot A = – [sin 2B – sin 2C] 2 k2 Similarly (c2 – a2) cot B = – [sin 2C – sin 2A] 2 k2 and (a2 – b2) cot C = – [sin 2A – sin 2B] 2 adding equations (i), (ii) and (iii), we get (b2 – c2) cot A + (c2 – a 2) cot B + (a2 – b 2) cot C = 0 Self Practice Problems In any ∆ABC, prove that A A 1. a sin + B = (b + c) sin . 2 2 A +B A −B sin cos 2 2 = C C sin cos 2 2 A −B cos 2 = C sin 2 ∵ B+C=π–A ∵ cosA = – cos(B + C) =– 2. a 2 sin(B − C) b 2 sin(C − A ) c 2 sin( A − B) + + =0 sin B + sin C sin C + sin A sin A + sin B 2. Cosine Formula: (i) cos A = b 2 + c2 − a 2 2bc 3. ..........(i) ..........(ii) ..........(iii) Hence Proved A B tan + tan c 2 2 . = A B a −b tan − tan 2 2 or a² = b² + c² − 2bc cos A = b 2 + c2 + 2bc cos (B + C) TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG Example : A −B cos a+b 2 In any ∆ABC, prove that = . C c sin 2 A −B cos a+b 2 ∵ We have to prove = . C c sin 2 ∵ From sine rule, we know that a b c = = = k (let) sin A sin B sin C ⇒ a = k sinA, b = k sinB and c = k sinC a+b ∵ L.H.S. = c Page : 12 of 29 Properties & Solution of Triangle ∵ Page : 13 of 29 Solution. cosC ∴ = a2 + b2 − c 2 2ab & cos B = 98930 58881 *Example : Solution. 64 + 49 − 169 b2 + c 2 − a2 = 2.8.7 2bc 2π 1 ⇒ cosA = – ⇒ A= 3 2 2π 3 ∴ sinA = sin = Ans. 3 2 In a ∆ABC, prove that a(b cos C – c cos B) = b2 – c2 ∵ We have to prove a (b cosC – c cosB) = b2 – c2. ∵ from cosine rule we know that cosA = a2 + c 2 − b2 2ac a 2 + b 2 − c 2 a2 + c 2 − b2 b − c L.H.S. = a 2ab 2ac a 2 + b2 − c 2 (a 2 + c 2 − b 2 ) – 2 2 = (b2 – c2) Hence L.H.S. = R.H.S. Proved = Example : Solution. = R.H.S. c a a b If in a ∆ABC, ∠A = 60° then find the value of 1 + + 1 + − . c c b b ∵ ∠A = 60° c a a b c +a+b b+c −a 1 + + 1 + − = ∵ c c b b c b = (b + c )2 − a 2 bc = (b 2 + c 2 − a 2 ) + 2bc bc = b2 + c 2 − a2 +2 bc b2 + c 2 − a 2 =2 +2 2 bc = 2cosA + 2 ∵ ∠A = 60° ⇒ cos A = 1 2 a b c a 1 + + 1 + − = 3 Ans. c c b b Self Practice Problems : ∴ a 2 + ab + b 2 , then prove that the greatest angle is 120°. A a(cosB + cosC) = 2(b + c) sin2 . 2 1. The sides of a triangle ABC are a, b, 2. In a triangle ABC prove that 3. Projection Formula: (i) a = b cosC + c cosB (ii) b = c cosA + a cosC (iii) c = a cosB + b cosA Example : In a triangle ABC prove that a(b cosC – c cosB) = b2 – c2 Solution. ∵ L.H.S. = a (b cosC – c cosB) = b (a cosC) – c (a cosB) ............(i) ∵ From projection rule, we know that b = a cosC + c cosA ⇒ a cosC = b – c cosA & c = a cosB + b cosA ⇒ a cosB = c – b cosA Put values of a cosC and a cosB in equation (i), we get L.H.S. = b (b – ccos A) – c(c – b cos A) = b2 – bc cos A – c2 + bc cos A = b2 – c2 = R.H.S. Hence L.H.S. = R.H.S. Proved Note: We have also proved a (b cosC – ccosB) = b2 – c2 by using cosine – rule in solved *Example. Example : In a ∆ABC prove that (b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c. Solution. ∵ L.H.S. = = = = = Hence L.H.S. = (b + c) cos A (c + a) cos B + (a + B) cos C b cos A + c cos A + c cos B + a cos B + a cos C + b cos C (b cos A + a cos B) + (c cos A + a cos C) + (c cos B + b cos C) a+b+c R.H.S. R.H.S. Proved TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG Example : c2 + a 2 − b 2 a 2 + b 2 − c2 (iii) cos C = 2 ca 2a b In a triangle ABC if a = 13, b = 8 and c = 7, then find sin A. (ii) cos B = 2. cos B c − b cos A = . cos C b − c cos A 3. cos A cos B cos C a2 + b2 + c 2 + + = . c cos B + b cos C a cos C + c cos A a cos B + b cos A 2abc 4. Napier’s Analogy - tangent rule: c −a B B−C A C−A b−c = cot (ii) tan = cot c +a 2 2 2 2 b+c A−B a−b C (iii) tan = cot + a b 2 2 Example : Find the unknown elements of the ∆ABC in which a = 3 + 1, b = 3 – 1, C = 60°. (i) tan Solution. ∵ a= ∵ 3 + 1, b = 3 – 1, C = 60° A + B + C = 180° ∴ A + B = 120° ∵ From law of tangent, we know that .......(i) a−b C A −B = cot tan a + b 2 2 = = ( 3 + 1) − ( 3 − 1) ( 3 + 1) + ( 3 − 1) 2 2 3 cot 30° cot 30° A −B =1 tan 2 π A −B ∴ = = 45° 4 2 ⇒ A – B = 90° From equation (i) and (ii), we get A = 105° and B = 15° Now, ⇒ ∵ From sine-rule, we know that ∴ c= .......(ii) a b c = = sin A sin B sin C a sin C ( 3 + 1) sin 60° = sin A sin105° 3 2 3 +1 ( 3 + 1) = ∵ sin105° = 3 +1 2 2 2 2 ⇒ c= ∴ c= Self Practice Problem 1. 6 , A = 105°, B = 15° In a ∆ABC if b = 3, c = 5 and cos (B – C) = Ans. 2. 6 Ans. 7 A , then find the value of tan . 25 2 1 3 A B C B −C C−A A −B If in a ∆ABC, we define x = tan tan , y = tan tan and z = tan tan 2 2 2 2 2 2 then show that x + y + z = – xyz. 98930 58881 In a ∆ABC, prove that B 2 C + c cos 2 = a + b + c. 2 b cos 2 2 TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 1. Page : 14 of 29 Self Practice Problems (i) sin (s − c) (s − a ) (s − b) (s − c) A B C = ; sin = ; sin = ca b c 2 2 2 (ii) cos s (s − b ) s (s − a ) A B C = ; cos = ; cos = ca b c 2 2 2 (iii) tan A = 2 (iv) sin A = (s − a ) (s − b) ab s (s − c) ab (s − b) (s − c) ∆ a+b+c = where s = is semi perimetre of triangle. s (s − a ) s (s − a ) 2 2∆ bc 98930 58881 s(s − a )(s − b)(s − c) = 1 1 1 ab sin C = bc sin A = ca sin B = s (s − a ) (s − b) (s − c) 2 2 2 Example : In a ∆ABC if a, b, c are in A.P. then find the value of tan Solution. ∵ tan ∴ tan ∴ ∵ ⇒ ∵ ∴ ∴ ⇒ ∆ A = − a) s ( s 2 and tan A C . tan . 2 2 ∆ C = − c) s ( s 2 ∆2 A C . tan = 2 s (s − a)(s − c ) 2 2 s−b b A C tan . tan = =1– s s 2 2 it is given that a, b, c are in A.P. 2b = a + c a+b+c 3b s= = 2 2 b 2 = put in equation (i) s 3 2 A C tan . tan =1– 3 2 2 1 A C tan . tan = Ans. 3 2 2 ∵ ∆2 = s (s – a) (s – b) (s – c) ........(i) Example : In a ∆ABC if b sinC(b cosC + c cosB) = 42, then find the area of the ∆ABC. Solution. ∵ ∵ ∵ ∴ b sinC (b cosC + c cosB) = 42 From projection rule, we know that a = b cosC + c cosB put in (i), we get ab sinC = 42 1 ∆= ab sinC 2 ∆ = 21 sq. unit Ans. ........(i) given ........(ii) Example : C A B In any ∆ABC prove that (a + b + c) tan + tan = 2c cot . 2 2 2 Solution. ∵ A B L.H.S. = (a + b + c) tan + tan 2 2 ∵ tan ∴ A 2 = (s − b)(s − c ) s(s − a) L.H.S. = (a + b + c) s−c = 2s s = 2 s( s − c ) and tan B = 2 (s − a)(s − c ) s(s − b) (s − b)(s − c ) (s − a)(s − c ) + s(s − a) s(s − b) s−b s−a + s−a s − b s−b + s−a (s − a)(s − b) ∵ 2s= a + b + c ∴ 2s – b – a = c TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 2 bc 6. Area of Triangle (∆) ∆= Page : 15 of 29 5. Trigonometric Functions of Half Angles: s(s − c ) (s − a)(s − b) = 2c cot = R.H.S. Hence L.H.S. = R.H.S. ∵ cot C = 2 s(s − c ) (s − a)(s − b) C 2 Proved 98930 58881 7. m - n Rule: (m + n) cot θ = m cot α − n cot β = n cot B − m cot C Example : If the median AD of a triangle ABC is perpendicular to AB, prove that tan A + 2tan B = 0. Solution. From the figure, we see that θ = 90° + B (as θ is external angle of ∆ABD) Now if we apply m-n rule in ∆ABC, we get (1 + 1) cot (90 + B) = 1. cot 90° – 1.cot (A – 90°) ⇒ – 2 tan B = cot (90° – A) ⇒ – 2 tan B = tan A ⇒ tan A + 2 tan B = 0 Hence proved. Example : The base of a triangle is divided into three equal parts. If t 1, t2, t3 be the tangents of the angles subtended by these parts at the opposite vertex, prove that 1 1 1 4 1 + 2 = + t1 t 2 t2 Solution. 1 1 + . t 2 t3 Let point D and E divides the base BC into three equal parts i.e. BD = DE = DC = d (Let) and let α, β and γ be the angles subtended by BD, DE and EC respectively at their opposite vertex. ⇒ t1 = tanα, t2 = tanβ and t3 = tanγ Now in ∆ABC ∵ BE : EC = 2d : d = 2 : 1 ∴ from m-n rule, we get (2 + 1) cotθ = 2 cot (α + β) – cotγ ⇒ 3cotθ = 2 cot (α + β) – cotγ .........(i) again ∵ in ∆ADC ∵ DE : EC = x : x = 1 : 1 ∴ if we apply m-n rule in ∆ADC, we get (1 + 1) cotθ = 1. cotβ – 1 cotγ 2cotθ = cotβ – cotγ .........(ii) from (i) and (ii), we get 2 cot(α + β) − cot γ 3 cot θ = cot β − cot γ 2 cot θ ⇒ 3cotβ – 3cotγ = 4cot (α + β) – 2 cotγ ⇒ 3cotβ – cotγ = 4 cot (α + β) cot α. cot β − 1 ⇒ 3cotβ – cotγ = 4 cot β + cot α ⇒ 3cot2β + 3cotα cotβ – cotβ cotγ – cotα cotγ = 4 cotα cotβ – 4 ⇒ 4 + 3cot2β = cotα cotβ + cotβ cotγ + cotα cotγ ⇒ 4 + 4cot 2β = cotα cotβ + cotα cotγ + cotβ cotγ + cot2β ⇒ 4(1 + cot 2β) = (cotα + cotβ) (cotβ + cotγ) 1 1 1 1 1 + + ⇒ 4 1 + 2 = tan α tan β tan β tan γ tan β ⇒ Page : 16 of 29 = 2c c s(s − c ) (s − a)(s − b) 1 1 1 1 1 4 1 + 2 = + + t1 t 2 t 2 t 3 t2 Hence proved TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG =2 1 In a ∆ABC, the median to the side BC is of length 11 − 6 3 30° and 45°. Prove that the side BC is of length 2 units. and it divides angle A into the angles of 8. Radius of Circumcirlce : a b c a bc = = = 2 sinA 2 sinB 2 sinC 4∆ s R Example : In a ∆ABC prove that sinA + sinB + sinC = Solution. In a ∆ABC, we know that a b c = = = 2R sin A sin B sin C a b c ∴ sin A = , sinB = and sinC = . 2R 2R 2R a+b+c ∴ sinA + sinB + sinC = ∵ a + b + c = 2s 2R 2s s = ⇒ sinA + sinB + sinC = . 2R R In a ∆ABC if a = 13 cm, b = 14 cm and c = 15 cm, then find its circumradius. abc .......(i) ∵ R= 4∆ ∵ ∆ = s( s − a)(s − b)(s − c ) Example : Solution. a+b+c = 21 cm 2 ∴ ∆ = 21.8.7.6 = 7 2.4 2.3 2 ⇒ ∆ = 84 cm2 13.14.15 65 ∴ R= = cm 4.84 8 65 ∴ R= cm. 8 A B C In a ∆ABC prove that s = 4R cos . cos . cos . 2 2 2 In a ∆ABC, ∵ Example : Solution. s(s − a) s(s − b) B C , cos = and cos = bc ca 2 2 A B C ∵ R.H.S. = 4R cos . cos . cos . 2 2 2 s ( s − a )( s − b )( s − c) abc .s ∵ = 2 (abc ) ∆ = s = L.H.S. Hence R.H.L = L.H.S. proved 1 1 1 1 4R In a ∆ABC, prove that + + – = . s−a s−b s−c s ∆ 4R 1 1 1 1 + + – = ∆ s−a s−b s−c s 1 1 1 1 + − + ∵ L.H.S. = s − a s − b s − c s ∵ Example : Solution. s= cos A = 2 2s − a − b (s − s + c ) + (s − a)(s − b) s(s − c ) c c = + (s − a)(s − b) s(s − c ) = ∵ s(s − c ) abc and R = ab 4∆ ∆= s( s − a )(s − b )(s − c ) 2s = a + b + c 2s 2 − s(a + b + c ) + ab s(s − c ) + (s − a)(s − b) =c =c ∆2 s(s − a)(s − b)(s − c ) ∴ 2s 2 − s(2s) + ab abc 4R∆ 4R L.H.S. = c = = 2 = 2 2 ∆ ∆ ∆ ∆ ∵ ⇒ abc 4∆ abc = 4R∆ R= 98930 58881 R= TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 1. Page : 17 of 29 Self Practice Problems : Page : 18 of 29 Self Practice Problems : 4R ∆ In a ∆ABC, prove the followings : 1. a cot A + b cotB + cos C = 2(R + r). 2. s s s r 4 − 1 − 1 − 1 = . a b c R 3. If α, β, γ are the distances of the vertices of a triangle from the corresponding points of contact with the αβ y incircle, then prove that = r2 α+β+ y 9. Radius of The Incircle : ∆ s a sin B2 sin C2 (iii) r = cos A2 A B C = (s − b) tan = (s − c) tan 2 2 2 A B C (iv) r = 4R sin sin sin 2 2 2 (ii) r = (s − a) tan (i) r = & so on 10. Radius of The Ex- Circles : A B C ∆ ; ∆ ; ∆ r2 = r3 = (ii) r1 = s tan ; r2 = s tan ; r3 = s tan 2 2 2 s−a s−b s−c B C a cos 2 cos 2 A B C (iii) r 1 = & so on (iv) r1 = 4 R sin . cos . cos 2 2 2 cos A2 Example : In a ∆ABC, prove that r1 + r2 + r3 – r = 4R = 2a cosecA (i) r 1 = Solution. ∵ L.H.S = r 1 + r2 + r3 – r ∆ ∆ ∆ ∆ + + – = s−a s−b s−c s 1 1 1 1 + − +∆ =∆ s − a s − b s − c s s − b + s − a s − s + c = ∆ (s − a)(s − b) + s(s − c ) c c + = ∆ ( s − a )( s − b ) s ( s − c) s(s − c ) + (s − a)(s − b) = c∆ s(s − a)( s − b)(s − c ) 2s 2 − s(a + b + c ) + ab = c∆ ∆2 abc = ∆ ∵ = 4R = 2acosecA ∵ a + b + c = 2s ∵ R= abc 4∆ a = 2R = acosecA sin A Example : = R.H.S. Hence L.H.S. = R.H.S. proved If the area of a ∆ABC is 96 sq. unit and the radius of the escribed circles are respectively 8, 12 and 24. Find the perimeter of ∆ABC. Solution. ∵ ∵ ∵ ∵ ∴ ∴ ∆ = 96 sq. unit r1 = 8, r2 = 12 and r3 = 24 ∆ r1 = ⇒ s – a = 12 s−a ∆ r2 = ⇒ s–b=8 s−b ∆ r3 = ⇒ s–c=4 s−c adding equations (i), (ii) & (iii), we get 3s – (a + b + c) = 24 s = 24 perimeter of ∆ABC = 2s = 48 unit. .........(i) .........(ii) .........(iii) 98930 58881 L.H.S. = TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG ∴ Page : 19 of 29 Self Practice Problems In a ∆ABC prove that 1. r 1r 2 + r 2r 3 + r 3 r1 = s2 2. rr1 + rr2 + rr3 = ab + bc + ca – s2 3. If A, A1, A2 and A3 are the areas of the inscribed and escribed circles respectively of a ∆ABC, then prove 1 1 1 1 that = + + . A A1 A2 A3 98930 58881 c r1 − r r2 − r + = r . a b 3 11. Length of Angle Bisectors, Medians & Altitudes : (i) Length of an angle bisector from the angle A = βa = 2 bc cos A 2 b+c ; 1 2 b2 + 2 c2 − a 2 2 2∆ & (iii) Length of altitude from the angle A = Aa = a 3 2 2 2 NOTE : ma + m b + m c = (a2 + b2 + c2) 4 (ii) Length of median from the angle A = ma = Example : AD is a median of the ∆ABC. If AE and AF are medians of the triangles ABD and ADC respectively, and AD = m 1, AE = m2 , AF = m3 , then prove that m 22 + m32 – 2m12 = Solution. In ∆ABC 1 AD 2 = (2b 2 + 2c 2 – a2) = m12 4 1 a2 ∵ In ∆ABD, AE2 = m22 = (2c2 + 2AD2 – ) 4 4 2 1 2AD 2 + 2b 2 − a Similarly in ∆ADC, AF2 = m 32 = 4 4 by adding equations (ii) and (iii), we get ∵ ∵ a2 . 8 .........(i) .........(ii) ........(iii) 2 4AD 2 + 2b 2 + 2c 2 − a 2 2 1 2b 2 + 2c 2 − a 2 = AD + 2 4 2 1 2b 2 + 2c 2 − a 2 + a 2 = AD + 2 4 m 22 + m 32 = 1 4 1 a2 (2b2 + 2c2 – a2) + 4 8 2 a = AD2 + AD2 + 8 2 a = 2AD2 + ∵ 8 a2 = 2m 12 + 8 = AD2 + ∴ m 22 + m32 – 2m12 = a2 8 AD 2 = m12 Hence Proved Self Practice Problem : 3. In a ∆ABC a = 5, b = 4, c = 3. ‘G’ is the centroid of triangle, then find circumradius of ∆GAB. 5 Ans. 13 12 TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 4. : OA = R & Oa = R cos A (ii) Incentre (I) : IA = r cosec (iii) Excentre (I1) : (iv) Orthocentre (H) : HA = 2R cos A & Ha = 2R cos B cos C (v) Centroid (G) : GA = Example : Solution. A & Ia = r 2 A I1 A = r1 cosec & I1a = r1 2 2∆ 1 2b2 +2c2 −a 2 & G a = 3a 3 If x, y and z are respectively the distances of the vertices of the ∆ABC from its orthocentre, then prove that abc a c b (i) + + = (ii) x y + z = 2(R + r) xyz x z y ∵ x = 2R cosA, y = 2R cosB, z = 2R cosC and and a = 2R sinA, b = 2R sinB, c = 2R sinC a c b ∴ + + = tanA + tan B + tan C .........(i) x z y & ∵ ∴ ∵ ∵ ∴ ∴ abc ........(ii) xyz = tanA. tanB. tanC Σ tanA = Π tanA We know that in a ∆ABC From equations (i) and (ii), we get abc a c b + + = xyz x z y x + y + z = 2R (cosA + cosB + cosC) A B C in a ∆ABC cosA + cosB + cosC = 1 + 4sin sin sin 2 2 2 A B C x + y + z = 2R 1 + 4 sin . sin . sin 2 2 2 A B C = 2 R + 4R sin . sin . sin 2 2 2 x + y + z = 2(R + r) ∵ r = 4R sin B C A sin sin 2 2 2 Self Practice Problems A B C tan tan . 2 2 2 1. If Ι be the incentre of ∆ABC, then prove that ΙA . ΙB . ΙC = abc tan 2. If x, y, z are respectively be the perpendiculars from the circumcentre to the sides of ∆ABC, then prove abc a c b + + = . that 4 xyz x z y 13. Orthocentre and Pedal Triangle: The triangle KLM which is formed by joining the feet of the altitudes is called the Pedal Triangle. (i) Its angles are π − 2A, π − 2B and π − 2C. (ii) Its sides are a cosA = R sin 2A, b cosB = R sin 2B and c cosC = R sin 2C (iii) Circumradii of the triangles PBC, PCA, PAB and ABC are equal. 14. Excentral Triangle: The triangle formed by joining the three excentres Ι1, Ι2 and Ι3 of ∆ ABC is called the excentral or excentric triangle. (i) ∆ ABC is the pedal triangle of the ∆ Ι1 Ι2 Ι3. (ii) Its angles are (iii) π C π A π B & − . − , − 2 2 2 2 2 2 A Its sides are 4 R cos , 2 B C 4 R cos & 4 R cos . 2 2 Page : 20 of 29 Circumcentre (O) 98930 58881 (i) TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 12. The Distances of The Special Points from Vertices and Sides of Triangle: Ι Ι1 = 4 R sin (v) Incentre Ι of ∆ ABC is the orthocentre of the excentral ∆ Ι1 Ι2 Ι3. Page : 21 of 29 A ; 2 B C Ι Ι2 = 4 R sin ; Ι Ι3 = 4 R sin . 2 2 (iv) ∴ A A B B C C 2 sin cos 2 sin cos 2 sin cos 2 2 2 2 2 2 = 8R3 . A B C cos . cos . cos 2 2 2 A B C A B C = 64R3 sin sin sin ∵ r = 4R sin sin sin 2 22 2 2 2 2 ΙΙ1 . ΙΙ2 . ΙΙ3 = 16R r Hence Proved ΙΙ1 + Ι2Ι3 = ΙΙ2 + Ι3Ι1 = ΙΙ3 + Ι1Ι2 2 (ii) 2 2 2 2 2 a2 A A + a2 cosec2 = A A 2 2 sin 2 cos 2 2 2 2 2 A 2 A 16 R sin . cos A A 2 2 2 2 2 ∵ a = 2 R sinA = 4R sin cos ∴ ΙΙ1 + Ι2Ι3 = = 16R A A 2 2 2 2 sin . cos 2 2 2 Similarly we can prove ΙΙ22 + Ι3Ι12 = ΙΙ32 + Ι1Ι22 = 16R Hence ΙΙ12 + Ι2Ι32 = ΙΙ22 + Ι3Ι12 = ΙΙ32 + Ι1Ι22 Self Practice Problem : π 1. In a ∆ABC, if b = 2 cm, c = 3 cm and ∠A = , then find distance between its circumcentre and 6 incentre. ∵ Ans. ΙΙ1 + Ι2Ι3 = a2 sec2 2 2 2 − 3 cm Exercise -1 Part : (A) Only one correct option 1. 2. In a triangle ABC, (a + b + c) (b + c − a) = k. b c, if : (A) k < 0 (B) k > 6 (C) 0 < k < 4 In a ∆ABC, A = (A) 6 3 cm (D) k > 4 2π 9 3 , b – c = 3 3 cm and ar (∆ABC) = cm 2. Then a is 3 2 (B) 9 cm (C) 18 cm (D) none of these TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG (i) Distance between circumcentre and orthocentre OH2 = R2 (1 – 8 cosA cos B cos C) (ii) Distance between circumcentre and incentre A B C sin sin ) = R2 – 2Rr OΙ2 = R2 (1 – 8 sin 2 2 2 (iii) Distance between circumcentre and centroid 1 OG2 = R2 – (a2 + b2 + c2) 9 Example : In Ι is the incentre and Ι1, Ι2, Ι3 are the centres of escribed circles of the ∆ABC, prove that (i) ΙΙ1. ΙΙ2 . ΙΙ3 = 16R2r (ii) ΙΙ12 + Ι2Ι32 = ΙΙ22 + Ι3Ι12 = ΙΙ32 + Ι1Ι22 Solution. (i) ∵ We know that A B C ΙΙ1 = a sec , ΙΙ2 = b sec and ΙΙ3 = c sec 2 2 2 C A B ∵ Ι1Ι2 = c. cosec , Ι2 Ι3 = a cosec and Ι3Ι1 = b cosec 2 2 2 A B C ∵ ΙΙ1 . ΙΙ2 . ΙΙ3 = abc sec sec .sec ........(i) 2 2 2 ∵ a = 2R sin A, b = 2R sinB and c = 2R sinC ∴ equation (i) becomes A B C sec sec ∵ ΙΙ1. ΙΙ2 . ΙΙ3 = (2R sin A) (2R sin B) (2R sinC) sec 2 2 2 98930 58881 15. Distance Between Special Points : (A) cos (B – C) (B) sin (B – C) b2 − c 2 is equal to 2a R (C) cos B – cos C (D) none of these If the radius of the circumcircle of an isosceles triangle PQR is equal to PQ (= PR), then the angle P is π π 2π π (A) (B) (C) (D) 6 3 3 2 5. In a ∆ ABC, the value of (A) 6. r R acosA + bcosB + ccosC is equal to: a+b+c (B) R 2r (C) In a right angled triangle R is equal to s+r s −r (B) (A) 2 2 R r (C) s – r (D) 2r R (D) s+r a 98930 58881 4. 7. In a ∆ABC, the inradius and three exradii are r, r1, r2 and r3 respectively. In usual notations the value of r. r 1. r2. r 3 is equal to abc (A) 2∆ (B) ∆2 (C) (D) none of these 4R 8. In a triangle if r1 > r2 > r3, then (A) a > b > c (B) a < b < c 9. 1 1 With usual notation in a ∆ ABC r + r 1 2 where 'K' has the value equal to: (A) 1 (B) 16 (C) a > b and b < c 1 1 + r 2 r3 (D) a < b and b > c 1 1 KR 3 + = , r a2b2 c 2 3 r1 (C) 64 (D) 128 10. The product of the arithmetic mean of the lengths of the sides of a triangle and harmonic mean of the lengths of the altitudes of the triangle is equal to: (A) ∆ (B) 2 ∆ (C) 3 ∆ (D) 4 ∆ 11. In a triangle ABC, right angled at B, the inradius is: AB + BC − AC AB + AC − BC AB + BC + AC (A) (B) (C) (D) None 2 2 2 The distance between the middle point of BC and the foot of the perpendicular from A is : 12. (A) 13. − a2 + b2 + c 2 2a (B) b2 − c 2 2a (C) b2 + c 2 (D) none of these bc In a triangle ABC, B = 60° and C = 45°. Let D divides BC internally in the ratio 1 : 3, then, (A) 2 3 (B) 1 1 (C) 3 (D) 6 sin ∠BAD = sin ∠CAD 1 3 14. Let f, g, h be the lengths of the perpendiculars from the circumcentre of the ∆ ABC on the sides a, b and a b c abc c respectively. If + + = λ then the value of λ is: f g h f gh (A) 1/4 (B) 1/2 (C) 1 (D) 2 15. A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3, 4 and 5 units. Then area of the triangle is equal to: (A) 9 3 (1 + 3 ) π 2 (B) 9 3 ( 3 − 1) π 2 (C) 9 3 (1 + 3 ) 2π 2 (D) 9 3 ( 3 − 1) 2π 2 16. If in a triangle ABC, the line joining the circumcentre and incentre is parallel to BC, then cos B + cos C is equal to: (A) 0 (B) 1 (C) 2 (D) none of these 17. If the incircle of the ∆ ABC touches its sides respectively at L, M and N and if x, y, z be the circumradii of the triangles MIN, NIL and LIM where I is the incentre then the product xyz is equal to: (A) R r2 (B) r R2 (C) 1 R r2 2 (D) Page : 22 of 29 If R denotes circumradius, then in ∆ABC, 1 r R2 2 TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 3. In any ∆ABC, then minimum value of (A) 3 (B) 9 r1 r2 r3 r3 (C) 27 (D) None of these 20. In a acute angled triangle ABC, AP is the altitude. Circle drawn with AP as its diameter cuts the sides AB and AC at D and E respectively, then length DE is equal to ∆ ∆ ∆ ∆ (A) (B) (C) (D) 3R 2R 4R R 21. 22. AA1, BB1 and CC1 are the medians of triangle ABC whose centroid is G. If the concyclic, then points A, C1, G and B 1 are (A) 2b2 = a2 + c2 (B) 2c 2 = a2 + b2 (C) 2a2 = b2 + c2 (D) None of these In a ∆ABC, a, b, A are given and c 1, c2 are two values of the third side c. The sum of the areas of two triangles with sides a, b, c1 and a, b, c2 is 1 1 (A) b 2 sin 2A (B) a 2 sin 2A (C) b 2 sin 2A (D) none of these 2 2 23. In a triangle ABC, let ∠C = is equal to (A) a + b – c π . If r is the inradius and R is the circumradius of the triangle, then 2(r + R) 2 [IIT - 2000] (B) b + c (C) c + a (D) a + b + c 24. Which of the following pieces of data does NOT uniquely determine an acute - angled triangle ABC (R being the radius of the circumcircle )? [IIT - 2002] (A) a , sin A, sin B (B) a, b, c (C) a, sin B, R (D) a, sin A, R 25. If the angles of a triangle are in the ratio 4 : 1 : 1, then the ratio of the longest side to the perimeter is (B) 1 : 6 (C) 1 : 2 + 3 (D) 2 : 3 [IIT - 2003] (A) 3 : (2 + 3 ) 26. The sides of a triangle are in the ratio 1 : (A) 1 : 3 : 5 27. 3 : 2, then the angle of the triangle are in the ratio [IIT - 2004] (C) 3 : 2 : 1 (D) 1 : 2 : 3 In an equilateral triangle, 3 coincs of radii 1 unit each are kept so that they touche each other and also the sides of the triangle. Area of the triangle is [IIT - 2005] (A) 4 + 2 3 28. (B) 2 : 3 : 4 (B) 6 + 4 3 (C) 12 + If P is a point on C1 and Q is a point on C2, then (A) 1/2 (B) 3/4 7 3 4 (D) 3 + 7 3 4 PA 2 + PB 2 + PC 2 + PD 2 equals QA 2 + QB 2 + QC 2 + QD 2 (C) 5/6 (D) 7/8 29. A circle C touches a line L and circle C1 externally. If C and C1 are on the same side of the line L, then locus of the centre of circle C is (A) an ellipse (B) a circle (C) a parabola (D) a hyperbola 30. Let " be a line through A and parallel to BD. A point S moves such that its distance from the line BD and the vertex A are equal. If the locus of S meets AC in A1, and " in A 2 and A3, then area of ∆A1 A2A3 is (A) 0.5 (unit)2 (B) 0.75 (unit)2 (C) 1 (unit)2 (D) (2/3) (unit)2 Part : (B) May have more than one options correct 31. In a ∆ABC, following relations hold good. In which case(s) the triangle is a right angled triangle? (A) r2 + r3 = r1 − r (B) a2 + b2 + c2 = 8 R2 (C) r1 = s (D) 2 R = r1 − r 32. In a triangle ABC, with usual notations the length of the bisector of angle A is : A abc cos ec 2 bc cos A 2 bc sin A 2∆ . A 2 2 2 (A) (B) (C) (D) b + c cos ec 2 b+c b+c 2R (b + c ) AD, BE and CF are the perpendiculars from the angular points of a ∆ ABC upon the opposite sides, then : 33. Page : 23 of 29 is equal to 98930 58881 19. r 1 A tan B + tan C is equal to : If in a ∆ABC, r = , then the value of tan 2 2 2 2 1 1 (A) 2 (B) (C) 1 (D) None of these 2 TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 18. (D) Circum radius of ∆DEF = R 2 34. The product of the distances of the incentre from the angular points of a ∆ ABC is: (abc )R (abc )r (A) 4 R2 r (B) 4 Rr2 (C) (D) s s 35. In a triangle ABC, points D and E are taken on side BC such that BD = DE = EC. If angle ADE = angle AED = θ, then: (A) tanθ = 3 tan B (B) 3 tanθ = tanC 6 tan θ (C) = tan A (D) angle B = angle C tan2 θ − 9 36. With usual notation, in a ∆ ABC the value of Π (r1 − r) can be simplified as: A (A) abc Π tan 2 1. (B) 4 r R2 If in a triangle ABC, (a b c)2 (C) 2 R (a + b + c) Exercise -2 (D) 4 R r2 cos A + 2 cos C sin B = , prove that the triangle ABC is either isosceles or right cos A + 2 cos B sin C angled. A + B , prove that triangle is isosceles. 2 2. In a triangle ABC, if a tan A + b tan B = (a + b) tan 3. r r If 1 − 1 1 − 1 = 2 then prove that the triangle is the right triangle. r2 r3 4. 5. 6. In a ∆ ABC, ∠ C = 60° & ∠ A = 75°. If D is a point on AC such that the area of the ∆ BAD is 3 times the area of the ∆ BCD, find the ∠ ABD. The radii r1, r2, r 3 of escribed circles of a triangle ABC are in harmonic progression. If its area is 24 sq. cm and its perimeter is 24 cm, find the lengths of its sides. ABC is a triangle. D is the middle point of BC. If AD is perpendicular to AC, then prove that ( ) 2 c 2 −a 2 cos A. cos C = . 3 ac 7. 8. 9. Two circles, of radii a and b, cut each other at an angle θ. Prove that the length of the common chord is 2ab sin θ . 2 a + b 2 + 2ab cos θ In the triangle ABC, lines OA, OB and OC are drawn so that the angles OAB, OBC and OCA are each equal to ω, prove that (i) cot ω = cot A + cot B + cot C (ii) cosec2 ω = cosec2 A + cosec2 B + cosec2 C In a plane of the given triangle ABC with sides a, b, c the points A′, B′, C′ are taken so that the ∆ A′ BC, ∆ AB′C and ∆ ABC′ are equilateral triangles with their circum radii R a, Rb , Rc; in−radii ra, r b, rc & ex−radii ra′, rb′ & rc′ respectively. Prove that; [∑ (3R +6r +2r ′ )] Πtan A = 3 (i) Π ra : Π Ra: Π ra ′ = 1: 8: 27 (ii) r1 r2 r3 a a a 10. 2 648 3 The triangle ABC is a right angled triangle, right angle at A. The ratio of the radius of the circle 11. circumscribed to the radius of the circle escribed to the hypotenuse is, 2 : 3 + 2 . Find the acute angles B & C. Also find the ratio of the two sides of the triangle other than the hypotenuse. The triangle ABC is a right angled triangle, right angle at A. The ratio of the radius of the circle 12. circumscribed to the radius of the circle escribed to the hypotenuse is, 2 : 3 + 2 . Find the acute angles B & C. Also find the ratio of the two sides of the triangle other than the hypotenuse. If the circumcentre of the ∆ ABC lies on its incircle then prove that, 13. ( ) ( ) cosA + cosB + cosC = 2 Three circles, whose radii area a, b and c, touch one another externally and the tangents at their points of contact meet in a point; prove that the distance of this point from either of their points of contacts 1 abc 2 . is a+b+c Page : 24 of 29 (C) Area of ∆AEF = ∆ cos2A (B) Area of ∆DEF = 2 ∆ cosA cosB cosC 98930 58881 Perimeter of ∆DEF r = Perimeter of ∆ABC R TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG (A) Page : 25 of 29 2. B 3. B 4. D 5. A 6. B 7. B 8. A 9. C 10. B 11. A 12. B 13. C 14. A 15. A 16. B 17. C 18. B 19. C 20. D 21. C 22. A 23. A 24. D 25. A 26. A 27. B 28. B 29. C 30. C 36. ACD 31. ABCD 32. ACD 33. ABCD 34. BD 35. ACD Exercise -2 4. ∠ ABD = 30° 10. B = π b 5π ,C= , = 2+ 3 12 12 c 5. 6, 8, 10 cms 11. B = π b 5π ,C= , = 2+ 3 12 12 c TEK O CLASSES GR OUP MA THS BY SUHAA G SIR PH: (0755)- 32 00 000, TEKO GROUP MATHS SUHAAG 1. C 98930 58881 Exercise -1