Download Some algebra drill problems

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Algebra Drill
Assembled by Katya Yurasovskaya for Math 180/184 classes and workshops.
Fall 2006
Based on Elementary Algebra by Faddeev and Sominskii 1965
Note: The most important sections are marked by ∗∗
I Rearrangement of algebraic expressions
• §1. Multiplication of powers of the same base and raising a
power to a power
Carry out the operations as indicated:
1. a3 ∗ a4 ∗ a5 ∗ a6 2. (x3 )5 3. [(c4 )3 ]2 4. [(x2 + y 2 )2 ]3
• §2. Raising a monomial to a power
Evaluate the powers:
1. (2a3 bc)4 2. (−ab2 c)5 3. ( 32 xy 2 )2 4. (−0.3a3 xy 2 )4
• §3. Multiplication of a polynomial by a monomial
Solve the following equation for x:
1. x ÷ (−3ab) = a3 + b3
• §4. Multiplication of a polynomial by a polynomial
Multiply the polynomials
1. (x2 + xy + y 2 )(2x2 − 3xy + 4y 2 )
2. (2a + b − c)(2a + b + c)
9 2
y )(14x + 9y)
3. (− 94 x2 + 27 xy − 49
2
2 2
4. (x + xy + y )
• §5. Multiplication of several polynomials
Multiply out the polynomial:
1. (x − 2y)(x + 2y)(x2 + 4y 2 )
• §6. Multiplication of polynomials containing only one letter
Multiply the polynomials:
1. (b − 1)(b5 + b4 + b3 + b2 + b + 1)
2. (x − 1)(x + 3)(x + 5)
3. (x − 1)(x − 2)(x − 3)
1
• * * §7. Rapid multiplication by formulae
(A + B)2 = A2 + 2AB + B 2
(A − B)2 = A2 − 2AB + B 2 )
(A + B)(A − B) = A2 − B 2
(A + B)3 = a3 + 3A2 B + 3AB 2 + B 3
(A − B)3 = A3 − 3A2 B + 3AB 2 − B 3
(A + B)(A2 − AB + B 2 ) = A3 + B 3
(A − B)(A2 + AB + B 2 ) = A3 − B 3
Use formulaes to do the following multiplications:
1. (3ab − x2 )(3ab + x2 ) 2. (x − 1)(x + 1)(x2 + 1)
3. (a + b)2 (a − b)2 (Solve by two methods)
4. (a2 + 3ab + b2 )(a2 − 3ab + b2 )
5. (3x − 2y)(9x2 + 6xy + 4y 2 ) 6. (2x + 1)3
7. (−a − b)2
Solve the following equations for x:
9. (a + b)x = a2 − b2
10. (3a2 − 2b)x = 9a2 − 4b2
11. (2p + 3q)x = 4p2 + 12pq + 9q 2
12. (a3 − 8b3 ) ÷ x = a − 2b
13. x ÷ (3p + q) = 9p2 − 3pq + q 2
II Factorization of Polynomials
• §1. The method of grouping
Factorize:
1. a3 + a − 2ab + 3 + 3a2 − 6b 2. a3 + a + 3a2 + a
• §2. Splitting individual terms of a polynomial into similar terms
EXAMPLE: Factorize a2 + 3ab + 2b2
Solution:
a2 + 3ab + 2b2 = a2 + ab + 2ab + 2b2 = a(a + b) + 2b(a + b) = (a + 2b)(a + b)
Factorize:
1. x2 + ax − 2a2 2. (x3 + 3bx − 4b2 x 3. x4 + 5x2 y 2 + 6y 4
2
• * *§3. The use of multiplication formulae
Factorize:
1. x4 − 16y 4 2. 4xy 3 − 4x3 y 3. a2 + 6ab + 9b2 − 4c2
4. 8x4 − 27a3 x 5. 4xy − xyz 2 6. x2 + 2x − y 2 − 2y
• * * * §4. More complicated examples
Factorize:
1. x5 + x3 − x2 − 1 2. a4 − 2a3 b − 8a2 b2 − 6ab3 − b4
3. x2 y + xy 2 + x2 z + xz 2 + y 2 z + yz 2 + 3xyz
4. x4 + 2x3 + 3x2 + 2x + 1 5. x5 − 1
III The rearrangement of fractional algebraic expressions
• §1. No ”division by zero” !
For what values of the symbols are the following algebraic expressions
meaningful?
1
1.
x−9
x2 − 64
2.
x−8
1
1
3. +
x y
4.
1
x
1
x
+
−
1
y
1
y
• §2. Division by powers of the same base
Divide:
1. a7 by a3 2. c2 by c5 3. b11 by b11
Find x in:
4. x ÷ a2 = a5 5. a3 ÷ x = a7 6. x ∗ a2 = a4
• §3. Division of monomials
Do the following divisions:
3 ∗ 2a3 bpq
1. 0.1a2 bc ÷ (−0.01ab) 2.
2 ∗ 4ab
3. 7ab2 c ÷ (5a3 b3 c3 )
• * *§4. Division of polynomial by a monomial
Examples and ideas:
a
b
c
d
a+b+c+d
=
+
+
+
m
m m m m
2. abcd + 2abc + 2abd + 2acd + 2bcd
1.
2abc 2abd 2abd 2bcd
+
+
+
)
abcd abcd
abcd abcd
2 2 2 2
= abcd(1 + + + + )
d c
b a
= abcd(1 +
3
Carry out the divisions:
1. (3x3 y − 0.1xy 2 + 7.3x2 y) ÷ (−0.1xy)
2. (x2 yz + xy 2 z + xyz 2 ) ÷ (xyz)
a3 b + a2 b2 − 3ab3
3.
2ab
xy + xz + yz
dividing term by term.
4. Rearrange
xyz
2 2
5. In the polynomial x y z − xy 2 z 2 + x2 y 2 z 2 takex2 y 2 z 2 outside brackets.
• * *§5. The application of multiplication formulae to the division
of a polynomial by a polynomial
Perform the following divisions:
x4 − 16y 2
x3 + 3x2 y + 3xy 2 + y 3
1. 2
2.
x + 4y 2
x+y
x4 + 6x2 + 9
(a + b)2 − (c + d)2
4.
3.
a+b−c−d
x2 + 3
Solve for x:
5. x(a + 2b) = a2 − 4b2 6. (a − 3b)x = a2 − 6ab + 9b2
7. (a − b − c)x = a2 − 2ab + b2 − c2
• Find some problems on long division in any algebra book and
do 3-4...
• §6. Simplification of algebraic fraction
Simplify the fractions:
x2 + 5x + 6
(x + y2)2 − (2x + y)2
1.
2.
x2 − 9
(x + 3y)2 − (3x + y)2
• §7. Addition and subtraction of algebraic fractions
Note: review finding common denominators
Add the fractions:
1
2x
3x
1.
− −
x+2 x x−2
2
1
(x + 1)2
2. 1 − + 2 −
x x
x2
• §8. Multiplication of fractions
Multiply the fractions:
a+b
a4 − b4
1
1
1
1. 2
∗
2. (1 + )(1 +
)(1 +
)
2
a +b
2ab
x
x+1
x+2
4
• * *§9. Simplification of fractions in which the numerator and
denominator are algebraic sums of fractions
Two useful examples:
1. Simplify the expression:
1
1
a + b
1
1
a + b
Solution:
1
1
a + b
1
1 =
a + b
b+a
ab
b−a
ab
=
b+a
ab
b+a
×
=
ab
b−a
b−a
2. Previous example done differently:
1
1
ab( a1 + 1b )
b+a
a + b
1 =
1 = b−a
1
1
+
−
)
ab(
a
b
a
b
3. Simplify the expression:
1
1
− x+1
2 + x−1
x+
x
x2 −1
Solution: Multiplying the numerator and denominator by x2 − 1
we get
2(x2 − 1) + (x + 1) − (x − 1)
2x2 − 2 + x + 1 − x + 1
2x2
=
=
=
x(x2 − 1) + x
x3 − x + x
x3
2
x
Simplify the fractions:
1
1
1
1
x(x+1) + (x+1)(x+2)
x+1 + x−1
2.
1. 1
1
x+2
6x
x−1 − x+1
x+2 − x
IV Powers and Roots
• §1. Properties of powers with integral indices
an ∗ am = an+m
(am )n = amn
(ab)n = an ∗ bn , (abc)n = an bn cn etc
an
a
( )n = n
b
b
5
Simplify the expressions:
a2 3
b2
) ∗ ( )4 2. (am−n )m+n for m > n 3. a ∗ (a2 )2 ∗ (a3 )3
b
a
4 Calculate (−2)6 and (−3)5
1. (
• §2. The root to any power of a number
Note: The positive
√ value of an even root is called its arithmetical value.
The notation n a for even
p n and a > 0 always means the arithmetical
value of the root. Thus (−3)2 = 3 (and not −3).
Evaluate:
p
p
√
√
√
1. 4 + 3 27 2. 3 27 + (−2)6 3. (a − 2)2
• §3. Extracting the root of products, fractions and powers
√
√
( n a)n = a, in particular ( a)2 = a)
√
n
√
n
a ∗ b ∗ ... ∗ k =
√
n
a∗
an = a
√
n
b ∗ ... ∗
√
n
k, for a, b, ...k > 0
√
n
a
a
= √
for a, b > 0
n
b
b
√
√
nk
n
a=
ak for a > 0
r
n
Rearrange:
q
√
√
1. 2 × 3 3 × 5 16
√
√
2× 33
√
3. √
3× 32
√
3
16
2. √
8
• §4. Raising a root to a power and extracting the root of a root
(
q
√
n
n
a)k = ak
q
k
√
n
a=
√
nk
a
p√
√
√
Rearrange: 1. ( 2)4 2. ( 3 5)2 3.
25
6
• §5. Removing a rational factor from under the root sign.
Putting a rational factor under the root sign
If a and b are√positive
numbers then
√
n
n
a b = an b
r
n
√
n
b
b
=
n
a
a
Put all factors under the root
rsign:
q
√
a
−
b
a+b
1. 2 3 2. 3 3 13 3.
a+b a−b
• * *§6 Rationalizing a denominator
A fractional expression containing radicals in the denominator can be
converted into a fractional expression without radicals in the denominator.
This process is called rationalizing the denominator.
1. The denominator is a radical, i.e. the fraction is of the form
A
√
n
b
In this case a factor must be chosen which, when multiplied by the
base, gives a perfect√nth power
√
5
532
532
5√
3
√
Example: √
= √
= √
=
2
3
3
3
3
2
4
4 2
8
2. Expression is of form
c
c
√ or
√
a+ b
a− b √
√
Then multiply numerator and denominator by a − b or a + b respectively. Then we get:
√
a
c(a − b)
c(a − sqrtb)
√ =
√
√ =
a2 − b2
a+ b
(a + b)(a − b)
3. The denominator is sum or difference of two square roots, i.e. the
fraction is of form
c
c
√ or √
√
√
a+ b
a− b
Use same method as in the previous case.
Rationalize the
√ denominators
√
√ of:
a
2+ 3
2−1
√
1. √
2.
3. √
5
6
2+1
a3
7
a3 − x3
√
4. √
a− x
V Quadratic equations and equations reducing to quadratics
• §1. The reduced quadratic equation
Reduced quadratic equation x2 + px + q = 0
1. ( 12 p)2 − q < 0
Equation has no solution
2. ( 12 p)2 − q = 0
Equation has only one solution, x = − 12 p
3. ( 12 p)2 − q > 0
Equation has two solutions:
r
p
p
x = − ± ( )2 − q
2
2
or equivalently
p
−p ± p2 − 4q
x=
2
Solve:
1. x3 − x − 96 = (x − 1)(x − 2)(x − 3) 2. (x + 1)2 = 2x2 − 7
• * * * §2. The general quadratic equation
General quadratic equation: ax+ bx + c = 0
To find roots use quadratic formula
√
−b ± b2 − 4ac
x=
2a
Solve:
1. 5x2 + 3x − 1 = 0 2. (a + b)x2 + (4a − 2b) + b − 5a = 0
3. (x + 1)(x + 2)(x + 3) = x3 + 52
• §3. Factorizing a quadratic trinomial
1. Given reduced quadratic trinomial x2 + px + q with real roots x1 , x2 ,
the factorized form is
x2 + px + q = (x − x1 )(x − x2 )
2. Given a quadratic trinomial ax2 + bx + c with real roots x1 , x2 , the
factorized form is
ax2 + bx + c = a(x − x1 )(x − x2 )
Factorize:
1. 3x2 − 10x + 3 2. x2 + 2x − 5
8
Answers
Section I
§1
1
1
2
2
• 1. a 8 2. x 5 3. c 4 4. (x + y 2 )6
§2
1
4 4
• 1. 16a 2b c
5 1
5
2. −a b 0c
3.
4 2 2
9x y
4. 0.0081a1 2x4 y 8
§3
4
4
• 1. x = −3a b − 3ab
§4
4
3
2 2
3
• 1. 2x − x y + 3x y + xy + 4y 4 2. 4a2 + 4ab + b2 − c2
81
3
4. x4 + 2x3 y + 3x2 y 2 + 2xy 3 + y 4
3. − 56
9 x − 49
§5
• 1. x4 − 16y 4
§6
6
3
2
• 1. b − 1 2. x + 7x + 7x − 15 3. x3 − 6x2 + 11x − 6
§7
• 1. 9a2 b2 − x4 2. x4 − 1 3. a4 − 2a2 b2 + b4 4. a4 − 7a2 b2 + b4 5.
27x3 −8y 3 6. 8x3 +12x2 +6x+1 7. a2 +2ab+b2 8. x4 +4x3 +2x2 −4x+1
9. x = a − b 10. x = 3a2 + 2b 11. x = 2p + 3q 12. x = a2 + 2ab + 4b2
13. x = 27p3 + q 3
9
Section II
§1
2
• 1. (a + 3)(a + 1 − 2b) 2. (a + 3)(a2 + 1)
§2
• 1. (x + 2a)(x − a) 2. x(x + 4b)(x − b) 3. (x2 + 2y 2 )(x2 + 3y 2
§3
2
2
• 1. (x + 2y)(x − 2y)(x + 4y ) 2. 4xy(y + x)(y − x)
3. (a + 3b + 2c)(a + 3b − 2c) 4. x(2x − 3a)(4x2 + 6ax + 9a2 )
5. xy(2 + z)(2 − z) 6. (x − y)(x + y + 2)
Section III
§1
• 1. x 6= 9 2. x 6= 8 3. x 6= 0 and y 6= 0 4. x 6= 0 and y 6= 0 and x 6= y
§2
• 1. a4 2.
1
c3
3. 1 4. x = a7 5. x =
1
a4
6. x = a2
§3
• 1. −10ac 2.
4 2
3 a pq
3.
7
5a2 bc2
§4
• 1. −30x2 + y − 73x 2. x + y + z 3.
4. x1 + y1 + z1 5. x2 y 2 z 2 ( z1 − x1 + y1 )
a2 +ab−3b2
2
§5
2
2
2
2
• 1. x − 4y 2. x + 2xy + y 3. a + b + c + d 4. x2 + 3
5. x = a − 2b 6. x = a − 3b 7. x = a − b + c
§6
• 1.
x+2
x−3
• 1.
x3 −11x2 +4
x(x2 −4)
• 1.
(a+b)2 (a−b)
2ab
2.
3
8
§7
2.
− x4
§8
2.
2x(x2 +x+1)
x+1
§9
• 1. x 2.
2
5x2 −4x−4
10
Section IV
§1
2 5
• 1. a b
m2 −n2
1
3. a 4 4. x6 + 4x5 − 2x4 − 20x3 − 7x2 + 24x + 16
2. a
§2
• 1. 5 2. 11 3. a − 2 for a ≥ 2; 2 − a for a < 2
§3
• 1.
√
30
q
29 × 34 2.
• 1. 4 2.
√
3
25 3.
1
2
6
√
3.
q
6
2
3
§4
5
§5
• 1.
• 1.
√
12 2.
√
5
a2
2.
√
3
9 3.
q
√
√
2 3+3 2
6
a−b
a+b
§6
√
√
√
3. 3 − 2 2 4. (a2 + ax + x2 )( a + x)
Section V
§1
• 1. −3, 5 2. −2, 4
§2
• 1.
√
−3± 29
10
2. 1,
• 1. 3(x − 3)(x −
1
3)
b−5a
a+b
3. 2, − 23
6
§3
√
√
2. (x + 1 − 6)(x + 1 + 6)
11
Related documents