Download here - BYU Math Department

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MAS113 CALCULUS II, TUTORIAL 4 SOLUTIONS
Section 7.5
π
π
2. (a) arctan(−1) = − . (b) csc−1 2 = .
4
6
√
π
π
−1
2 = . (b) arcsin 1 = .
4. (a) sec
4 ¶
2µ
¶ √
µ
3
3π
3π
1
=
=
6. (a) tan−1 tan
. (b) cos arcsin
.
4
4
2
2
−x arcsin x
+ 1.
24. h′ (x) = √
1 − x2
x
26. f ′ (x) = ln(arctan x) +
.
2
(1 + x ) arctan x
−1
esec t
′
.
28. h (t) = √
2−1
x
x
Z 1
4
60.
dt = (4 arctan t)10 = π.
2
Z0 t + 1
dt
1
√
= arcsin(2t) + C.
62.
2
2
Z π/21 − 4t
π
sin x
π/2
dx
=
(−
arctan(cos
x))
.
=
64.
0
1 + cos2 x
4
Z0
arctan x
1
66.
dx
=
arctan2 x + C.
2
2 Z
Z 1+x
³x´
1
1
1
1
√
p
dx =
+ C.
dx = sec−1
68.
4
2
2
x x2 − 4
(x/2) (x/2)2 − 1
70. Making a change of variables by setting u = e2x , we have
Z
Z
e2x
1
1
1
1
√
√
dx =
du = arcsin u = arcsin e2x .
2
2
2
1 − e4x
1 − u2
Section 7.6
5
e3 + e−3
≈ 10.067661996. (b) cosh(ln 3) = .
4. (a) cosh 3 =
2
3
√
e + 1/e
−1
≈ 1.175201194. (b) sinh 1 = ln(1 + 2) ≈ 0.881373587.
6. (a) sinh 1 =
2
µ x
¶2 µ x
¶2
e + e−x
e2x + e−2x
e − e−x
2
2
16. cosh x + sinh x =
+
=
= cosh 2x.
2
2
2
x −e−x
1 + eex +e
2ex
1 + tanh x
−x
=
18.
=
= e2x .
x
−x
−x
1 − tanh x
2e
1 − eex −e
+e−x
32. g ′ (x) = 2 sinh x cosh x = sinh 2x.
¡
¢
34. F ′ (x) = cosh x tanh x + sinh xsech2 x = sinh x 1 + sech2 x .
1
MAS113 CALCULUS II, TUTORIAL 4 SOLUTIONS
2
36. Z
f (t) = e secht + et secht tanh t = et secht (1 − tanh t).
1
56.
sinh(1 + 4x)dx = cosh(1 + 4x) + C.
4
Z
′
tanh xdx = ln | cosh x| + C.
58.
60.
t
Z
sech2 x
dx = ln |2 + tanh x| + C.
2 + tanh x
Section
8.2
Z
Z
1
1
6
3
2.
sin x cos xdx = sin6 x(1 − sin2 x) cos xdx = sin7 x − sin9 x + C.
7
9
1
10. Applying the formula cos2 x = (1 + cos 2x) twice, we get that the integrand is
2
µ
¶
3
1
3
1 + 3 cos 2x + ((1 + cos 4x) + cos 2x .
8
4
Moreover,
¶
µ
Z
Z
1
1 3
3
2
cos 2xdx = (1 − sin 2x) cos 2xdx =
sin 2x − sin 2x + C.
2
3
Therefore, we have
¶π
µ
Z π
1
3
1
5π
5
3
6
θ + sin 2θ +
sin 4θ −
sin 2θ
.
=
cos θdθ =
16
4
128
48
16
0
0
1
14. Using the formulas sin 2x = 2 sin x cos x and sin2 x = (1 − cos 2x) we have
2
µ
¶π/2
Z π/2
Z π/2
1
1
1
π
2
2
sin x cos xdx =
x − sin 4x
1 − cos 4xdx =
= .
8 0
8
4
16
0
0
18. First we have
(1 − sin2 θ)2
cos5 θ
=
cos θ.
sin θ
sin θ
Therefore, with the change of variables u = sin θ, we have
Z
Z
Z
(1 − u2 )2
1
1
5
4
cot θ sin θdθ =
du =
− 2u + u3 du = ln | sin θ| − sin2 θ + sin4 θ + C.
u
u
4
cot5 θ sin4 θ =
26. The integrand can be re-written as (1 + tan2 θ) tan4 θ sec2 θ. Therefore, with a change
of variables u = tan θ, we get
Z π/4
Z 1
12
4
4
sec θ tan θdθ =
(1 + u2 )u4 du = .
35
0
0
28. The integrand can be re-written as (sec2 (2x) − 1) sec4 (2x) tan(2x) sec(2x). Therefore,
with a change of variables u = sec(2x) we get
Z
Z
1
1
1
3
5
u6 + u4 du =
sec7 (2x) +
sec5 (2x) + C.
tan (2x) sec (2x)dx =
2
14
10
MAS113 CALCULUS II, TUTORIAL 4 SOLUTIONS
2
2
Z
tan6 (ay)dy =
3
32. Using tan x = sec x − 1 we get that
¡
¢
tan6 (ay) = sec2 (ay) tan4 (ay) − tan2 (ay) + 1 − 1.
Therefore,
1
1
1
tan5 (ay) −
tan3 (ay) + tan(ay) − y + C.
5a
3a
a
38. The integrand can be re-written as (1 + cot2 x) cot6 x csc2 x. Therefore, we have
Z
Z
1
1
4
6
csc x cot xdx = (1 + cot2 x) cot6 x csc2 xdx = − cot7 x − cot9 x + C.
7
9
44. Using the formula sin 2x = 2 sin x cos x we get
Z
Z
1
1
cos x + sin x
dx =
(csc x + sec x) dx = ln |(sec x + tan x)(csc x − cot x)| + C.
sin 2x
2
2
48. Using the same method as in exercise 32, we have
Z
Z
1
8
7
tan xdx = tan x − tan6 xdx.
7
Let this last integral on the right-hand side of the above be I ′ . We have
¶
¶
µ
Z µ
Z
1
1
7
′
8
′
8
tan x − I sec x −
tan x sec x − I tan x sec x dx.
tan x sec xdx =
7
7
We therefore have
¶
µ
Z
Z
1
8
7
′
8
tan x − I sec x + I ′ tan x sec xdx.
tan x sec xdx =
7
7
By a similar computation, we have
Z
Z
6
′
tan x sec xdx = I sec x − I ′ tan x sec xdx.
From these we infer that
√
µ
¶π/4
Z π/4
1
2 7
7
8
7
tan x sec xdx =
tan x sec x
− I.
− I=
8
8
8
8
0
0
1
66. The integrand can be re-written as (cos((n − m)x) − cos((m + n)x)). If m − n 6= 0,
2
then
µ
¶π
Z π
1
1
1
sin mx sin nxdx =
sin((n − m)x) −
sin((m + n)x)
= 0.
2 n−m
n+m
−π
−π
On the other hand, if m − n = 0, then
µ
¶π
Z
Z π
1
1
1 π
x−
sin 2mx
(1 − cos 2mx) dx =
= π.
sin mx sin nxdx =
2 −π
2
2m
−π
−π
4
MAS113 CALCULUS II, TUTORIAL 4 SOLUTIONS
68. We have
1
π
Z π
N
1X
f (x) sin mxdx =
an
sin nx sin mxdx.
π n=1
−π
−π
Z
π
The integral above vanishes unless m = n in which case it is π. Hence we have the desired
result.
Related documents