Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
MAS113 CALCULUS II, TUTORIAL 4 SOLUTIONS Section 7.5 π π 2. (a) arctan(−1) = − . (b) csc−1 2 = . 4 6 √ π π −1 2 = . (b) arcsin 1 = . 4. (a) sec 4 ¶ 2µ ¶ √ µ 3 3π 3π 1 = = 6. (a) tan−1 tan . (b) cos arcsin . 4 4 2 2 −x arcsin x + 1. 24. h′ (x) = √ 1 − x2 x 26. f ′ (x) = ln(arctan x) + . 2 (1 + x ) arctan x −1 esec t ′ . 28. h (t) = √ 2−1 x x Z 1 4 60. dt = (4 arctan t)10 = π. 2 Z0 t + 1 dt 1 √ = arcsin(2t) + C. 62. 2 2 Z π/21 − 4t π sin x π/2 dx = (− arctan(cos x)) . = 64. 0 1 + cos2 x 4 Z0 arctan x 1 66. dx = arctan2 x + C. 2 2 Z Z 1+x ³x´ 1 1 1 1 √ p dx = + C. dx = sec−1 68. 4 2 2 x x2 − 4 (x/2) (x/2)2 − 1 70. Making a change of variables by setting u = e2x , we have Z Z e2x 1 1 1 1 √ √ dx = du = arcsin u = arcsin e2x . 2 2 2 1 − e4x 1 − u2 Section 7.6 5 e3 + e−3 ≈ 10.067661996. (b) cosh(ln 3) = . 4. (a) cosh 3 = 2 3 √ e + 1/e −1 ≈ 1.175201194. (b) sinh 1 = ln(1 + 2) ≈ 0.881373587. 6. (a) sinh 1 = 2 µ x ¶2 µ x ¶2 e + e−x e2x + e−2x e − e−x 2 2 16. cosh x + sinh x = + = = cosh 2x. 2 2 2 x −e−x 1 + eex +e 2ex 1 + tanh x −x = 18. = = e2x . x −x −x 1 − tanh x 2e 1 − eex −e +e−x 32. g ′ (x) = 2 sinh x cosh x = sinh 2x. ¡ ¢ 34. F ′ (x) = cosh x tanh x + sinh xsech2 x = sinh x 1 + sech2 x . 1 MAS113 CALCULUS II, TUTORIAL 4 SOLUTIONS 2 36. Z f (t) = e secht + et secht tanh t = et secht (1 − tanh t). 1 56. sinh(1 + 4x)dx = cosh(1 + 4x) + C. 4 Z ′ tanh xdx = ln | cosh x| + C. 58. 60. t Z sech2 x dx = ln |2 + tanh x| + C. 2 + tanh x Section 8.2 Z Z 1 1 6 3 2. sin x cos xdx = sin6 x(1 − sin2 x) cos xdx = sin7 x − sin9 x + C. 7 9 1 10. Applying the formula cos2 x = (1 + cos 2x) twice, we get that the integrand is 2 µ ¶ 3 1 3 1 + 3 cos 2x + ((1 + cos 4x) + cos 2x . 8 4 Moreover, ¶ µ Z Z 1 1 3 3 2 cos 2xdx = (1 − sin 2x) cos 2xdx = sin 2x − sin 2x + C. 2 3 Therefore, we have ¶π µ Z π 1 3 1 5π 5 3 6 θ + sin 2θ + sin 4θ − sin 2θ . = cos θdθ = 16 4 128 48 16 0 0 1 14. Using the formulas sin 2x = 2 sin x cos x and sin2 x = (1 − cos 2x) we have 2 µ ¶π/2 Z π/2 Z π/2 1 1 1 π 2 2 sin x cos xdx = x − sin 4x 1 − cos 4xdx = = . 8 0 8 4 16 0 0 18. First we have (1 − sin2 θ)2 cos5 θ = cos θ. sin θ sin θ Therefore, with the change of variables u = sin θ, we have Z Z Z (1 − u2 )2 1 1 5 4 cot θ sin θdθ = du = − 2u + u3 du = ln | sin θ| − sin2 θ + sin4 θ + C. u u 4 cot5 θ sin4 θ = 26. The integrand can be re-written as (1 + tan2 θ) tan4 θ sec2 θ. Therefore, with a change of variables u = tan θ, we get Z π/4 Z 1 12 4 4 sec θ tan θdθ = (1 + u2 )u4 du = . 35 0 0 28. The integrand can be re-written as (sec2 (2x) − 1) sec4 (2x) tan(2x) sec(2x). Therefore, with a change of variables u = sec(2x) we get Z Z 1 1 1 3 5 u6 + u4 du = sec7 (2x) + sec5 (2x) + C. tan (2x) sec (2x)dx = 2 14 10 MAS113 CALCULUS II, TUTORIAL 4 SOLUTIONS 2 2 Z tan6 (ay)dy = 3 32. Using tan x = sec x − 1 we get that ¡ ¢ tan6 (ay) = sec2 (ay) tan4 (ay) − tan2 (ay) + 1 − 1. Therefore, 1 1 1 tan5 (ay) − tan3 (ay) + tan(ay) − y + C. 5a 3a a 38. The integrand can be re-written as (1 + cot2 x) cot6 x csc2 x. Therefore, we have Z Z 1 1 4 6 csc x cot xdx = (1 + cot2 x) cot6 x csc2 xdx = − cot7 x − cot9 x + C. 7 9 44. Using the formula sin 2x = 2 sin x cos x we get Z Z 1 1 cos x + sin x dx = (csc x + sec x) dx = ln |(sec x + tan x)(csc x − cot x)| + C. sin 2x 2 2 48. Using the same method as in exercise 32, we have Z Z 1 8 7 tan xdx = tan x − tan6 xdx. 7 Let this last integral on the right-hand side of the above be I ′ . We have ¶ ¶ µ Z µ Z 1 1 7 ′ 8 ′ 8 tan x − I sec x − tan x sec x − I tan x sec x dx. tan x sec xdx = 7 7 We therefore have ¶ µ Z Z 1 8 7 ′ 8 tan x − I sec x + I ′ tan x sec xdx. tan x sec xdx = 7 7 By a similar computation, we have Z Z 6 ′ tan x sec xdx = I sec x − I ′ tan x sec xdx. From these we infer that √ µ ¶π/4 Z π/4 1 2 7 7 8 7 tan x sec xdx = tan x sec x − I. − I= 8 8 8 8 0 0 1 66. The integrand can be re-written as (cos((n − m)x) − cos((m + n)x)). If m − n 6= 0, 2 then µ ¶π Z π 1 1 1 sin mx sin nxdx = sin((n − m)x) − sin((m + n)x) = 0. 2 n−m n+m −π −π On the other hand, if m − n = 0, then µ ¶π Z Z π 1 1 1 π x− sin 2mx (1 − cos 2mx) dx = = π. sin mx sin nxdx = 2 −π 2 2m −π −π 4 MAS113 CALCULUS II, TUTORIAL 4 SOLUTIONS 68. We have 1 π Z π N 1X f (x) sin mxdx = an sin nx sin mxdx. π n=1 −π −π Z π The integral above vanishes unless m = n in which case it is π. Hence we have the desired result.