Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
- J { • :c Lo .lo- -I (3; _( t ~ Complex Numbers Pre-Calc Name ~,.... __ (' = Simplify the following powers ofi. l. iSO , 2. ".-I i2S ". , 3. i67 -- - ( l :0-1 4. il22 Write the following complex numbers in standard form. 5. ,;( .!: )L 6. 2-,/-27 7. -I -&'L -6/ +i' G 8. -4/' + 2/ Perform the specified operation and write the result in standard form. F; 3 ,J::6,.J2 9.. , '.r- L'. L;Z;-'Vi).; "" "1 10. n',)-10 . J5L'vW~ ,1"7. v5'OL II. (,)-10)' ?- lOlL- co 3 -;;l.i . foOL 3+-( 13. -;;)~ _"- t-2 . -lei{. (1-3iX3-41~:=' 5-'I( _ qL '/ (f:tiX:f::' 2/) 12. ClFOiJ .").. .;>.. t t;;Jt -. -3 --,;-_.-''), - ,:;I 15. (4+5i?' ,,-) Iv, -t '-jo'- :;).("[1 16. (2+31)' + (2-3i)' "'- '-j -L/ -\- 1;X t~, ~ 10 doJ 4 17. 4-5/ (lj-fSi. ) _ t B -L ,I 1/ "+L ) '-j <I.•.. t' ( .2 -c .,,(pf}.O[, <-11 (;1)'('- /8-7i \ <1"';/') 19. ( q.L :.4 t 4'- 2+1 )(J..f-i) 18-: -,2-1 (Ljtrc:) !G~')-O~ '''' it- tz:= L /~,,,,,'t < (1-2/ )u-r;U ) 'i tl(,~_1;"!,/;L I _'-j~2., ~ i..~' 'Yt'-i +- (.,. 3i -,;Lh -;;( f I, ;f.-5?S" i) ,;as,) : ;;110 +- 5~()~t ~~ (21-71)(4 + 3/) 20.----2 - 5i + 6 -(~-:si)(~ri) [~'B (lOS' _ ( '?5:' t '')q~i~1 OJ. "l I '-I _~J(2- ~ t-I-z), Section 4 - 1 Polynomial Functions ">egree of a polvnomial in one variable: the greatest exponent of its variable, tells how,many possible solutions (complex ,solutions) the function has .. . 5,><.,0 l- '3>c;;LO t 'f... . liP} . Leading Coefficient: The coefficient of the variable with the greatest Exponent. ':). Zeros (roots or solution): The place where the graph crosses the x- axis (or xintercept; to find, set y = 0) . Number of turns: The greatest exponent - 1 = the maximum number of turns. Example 1: State the degree and leading coefficient of the 'polynomial function f{i) = 6x5 8)(2 - 8x. Then determine whether-3and 0 are zeros of the f{x). . d C'4v-ee-=' S-' Lt6£,~ cere-f-h ClM ; ~ o f s oj' -lGvO I . bu--+ -) 1'$ {L01 Example 2: Write a polynomial equation of least degree with roots 0, .fii and -.fii. (Y.-D'/><1 )( (x.9-_ -Vii.. V.:2,i)(x-fii)", ;;\c.,:>') )~~(-l)= ~--:-:..-' . . , )<.3 y: -J~ 4. ~\ --- ... Example 3: State the number of co~ roots of the equation then find the roots. ~ ,e.cd S{)Lu-f,(JYls' .- ....•• 3x2 + C*- ',Yx + Lf) 3><- - l =- 0 "3' Ie -;. I l'- 0 '(3 X ~ 11x- 4 = 0 0 -rLj::..O X. __ - L( + Name Difference Quotient Evaluate each of the following functions using the difference quotient. [Cx + h) SHOW ALL STEPS! - [Cx) h +2 2. [Cx) = -8x - '6(q~)T~- t8~i-~) .h - ~- 3. [Cx) I"h +-i = 2x2 3 ')--,3 - ~(~;-11 ¥' -,,; '3 -~0 f:- E]) S. (~J(;l-~ ~(,."-I- ;!~h t ~'') _;2>c ~ ~ 10+Lh h t.;l.h",.3' 1 h - Ix (Lf,( t;JV K x2 + Sx ,; 6 L 1(1'h) ~+-'5 {t1h} - (" - (/' 6. [Cx) = _2_ 3x-4 /'~ J~~th2.t4xt5h-;{-~-s:/P&_ h .' .h ? • .1 +- ;10{ )<: h :~~ / , " Review: _\ -.1 ~ 2..: ~I , 1,.'. I -h h -l-!> h h (ht2~ v - n\' lj~\y,'. t5'L -l" ) _ +-5) Name -------- Pre-Calc Pedorm the indicated operations. Write the resulting polynomial in standard form. 1. (15x2-6)-(-8x -14x -n) 3 2 1. ax '} f.;("I)("'+11 Find the product. Write the resulting polynomial in standard form. 3. 3. (3x-2Y 4. [(x+l)- y]2 5. Completely factor the following expressions. 6. 12x2 48 - 7. 16+6x-x2 7. + 40 9. 9. 5x3 Simplify. Express answers with positive exponents. '5/ 'i'LJ 10. (:)3(~r 10. l' :~: '-' :-;, 11. :-:; ( .::.-L -3 4f 5 IJ- S11. \1 .,;:1. <:J '1 ~ W rite the following expression in reduced form. 12+x-x2 19. ----2 2x -9x+4 _I ( ?-IX) 19"_~_~7=- I 'J){ _ -I) Perform the indicated operation on the following expressions and simplify. (x+~)( )<-~) 2 20 2x +x-6, • 2 X +4x-5 x3 -8 21. ---,'--x2 -4 3 2 x -3x +2x 2 4x -6x x2 +2x+4 x3 +8 . 20. ;( L \(-rt)) 21. Simplify the following compl@xfractions. 22. ,'23. x-2 (~-3) 1 __ 1 ) ( x-I 22. --------- (J.-1'i ') (X-I)_ 23. 'Y,(x-.;;I..) Name ------- Precalc Review Exponentials, Logs, and Trig , Solve for x.' Show all your work. 2. 4e2x=5 <j 7j eP.t.: s/" )1 V1 e~.: jVl >I'f ~ ~ .Q.:S7,! eX:. ;J )/"1./--/(\ ~ Cx~ I~q~ )(-:- 0,111)7 x =6 x 4. 8 _2e x = 300 e-'f ~ l@ 5. 500e- '?.l: -~ eX; or-Lrll \ X )t'l t - 't : 1. t'l f3!E. ) ~ , ~~ cY~o~ 6. 20(100-e 70 2) = 500 -,ro ,em. /1;.: -} lSi) -ell/;;.:: X~OS(og et/).. '-1~ ~ 7' ' 1Vlt '1~:J.vt .i- Evaluate the expression without using a calculator. 7. log216 J~ -/ro /(.,)( -;. ~ 11 if -) ~(i~ 'if, t..~S- 9. 10glO 0.01 8. log'64 ~ 1':. I"" J- 7~ '-/ I '-}~ :;'i ~. .2.x--' ~ Use the properties oflogs to write the expression as a sum, difference, and/or constant multiple oflogarithms. ../xy4 11. log-4- 10. log~x2(x+2) -i!!09 X;' f-.JO~ L ~~ i7- Joqx +- -1- (\t+'~) , ~ (t+~) JLXj Cd).) 12.I{X~~l) 'J- V1 (X ':. I) - 3)1) 'j. +. PC:\ l\ _ {-- l-j ()I,l ~d<-\ 0. \ ~[) Lf' , d- Jn 11:31-):::.;;1. .e~::: 3)'. 3 x.~ :::1.%3 1/~,1/1;\YH . :( -,) ;).. (-X-"J.) ("J'c') =. jn C x=;)Z;;I)( '3'); . c."-l~ ~ = 2lnx >< )<.,;:L .;L J J<;;1.- 3)( - 4", +G> =. - .3 - '1-'') (}) &, ~ 14. In(x-2)+ln(2x-3) - -a- ~ ~i G Solve the logarithmic equation algebraically. Show all your wor~ 13. 2ln(3x) = 4 I~ X X;;' - '7~ •..(.,~c Use trig identities to 0 tain solutions to these equations giving all answers to the nearest degree. 18. 2cosx = 1,-2;r:O;x:O; 2;r CD5x;. 1 19.2sin2x=1::0:O;x:O;2;r {5;n\::~ ) ~ I ).J -, 't) COS-l(~)o ()(1f 3 . 20. 2coi'-x-smx ( = 1:: 0:0;x :::;2;r 21. .J3 sin x = cosx:: 0:0; x:O; 2;r .8i,?:" 't I 't