Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name: ________________________ Class: ___________________ Date: __________ ID: A Algebra 2 - Chapter 8 Review Is the relationship between the variables in the table a direct variation, an inverse variation, or neither? If it is a direct or inverse variation, write a function to model it. ____ 1. a. b. c. x –9 –7 –2 –1 y 36 28 8 4 324 x direct variation; y 4x neither inverse variation; y ____ 2. Suppose that x and y vary inversely, and x = 10 when y = 8. Write the function that models the inverse variation. 2 80 a. y c. y x x 18 b. y d. y = 0.8x x ____ 3. Suppose that x and y vary inversely and that y variation and find y when x = 4. 1 1 a. y ; 3x 24 8 16 b. y ; 3x 3 c. d. 8 when x = 8. Write a function that models the inverse 3 8 ; 3x 64 y ; 3x y 8 3 16 3 ____ 4. Suppose that y varies jointly with w and x and inversely with z and y = 175 when w = 5, x = 20 and z = 4. Write the equation that models the relationship. Then find y when w = 2, x = 24 and z = 6. 4wx 7z 7 a. y ; 32 c. y ; z wx 8 4z 7wx b. y ;2 d. y ; 56 wx z ____ 5. The amount of oil used by a ship traveling at a uniform speed varies jointly with the distance and the square of the speed. The ship uses 34 barrels of oil in traveling 60 miles at 20 mi/h. How many barrels of oil are used when the ship travels 32 miles at 23 mi/h? Round your answer to the nearest tenth of a barrel, if necessary. a. 3.0 barrels c. 18.1 barrels b. 45.0 barrels d. 24.0 barrels 1 Name: ________________________ ID: A Graph the function. ____ 6. y 4 x a. c. b. d. 2 Name: ________________________ ID: A Sketch the asymptotes and graph the function. ____ ____ 7. y 5 1 x1 a. c. b. d. 8. Write an equation for the translation of y a. b. 4 7 x6 4 y 6 x7 y 4 that has the asymptotes x = 7 and y = 6. x 4 c. y 6 x7 4 d. y 7 x6 3 Name: ________________________ ____ 9. This graph of a function is a translation of y a. b. 4 4 x3 4 y 4 x3 y ID: A 4 . What is an equation for the function? x c. d. 4 3 x4 4 y 3 x4 y Find any points of discontinuity for the rational function. ____ 10. y a. b. (x 3)(x 5)(x 7) (x 1)(x 4) x = 1, x = 4 x = –1, x = –4 c. d. x = 3, x = –5, x = 7 x = –3, x = 5, x = –7 ____ 11. What are the points of discontinuity? Are they all removable? y a. b. (x 7)(x 3) x 2 10x 21 x = 1, x = –8, x = –2; yes x = 7, x = 3; yes c. d. x = –7, x = –3; no x = –1, x = 8, x = 2; no ____ 12. Describe the vertical asymptote(s) and hole(s) for the graph of y a. b. c. d. asymptotes: x = –4, –2 and hole: x = 1 asymptote: x = 1 and no holes asymptote: x = 1 and holes: x = –4, –2 asymptotes: x = –4, –2 and no holes 4 x1 . x 2 6x 8 Name: ________________________ ID: A 2x 3 3x 2 . 2x 3 6x 2 c. no horizontal asymptote d. y = 0 ____ 13. Find the horizontal asymptote of the graph of y a. b. y=1 y = 1 What is the graph of the rational function? ____ 14. y 2x 4 x1 a. c. b. d. Simplify the rational expression. State any restrictions on the variable. ____ 15. t 2 4t 32 t8 a. t 4; t 8 b. t 4; t 8 c. d. 5 t 4; t 8 t 4; t 8 Name: ________________________ ____ 16. n 4 10n 2 24 n 4 9n 2 18 n2 4 a. ;n n2 3 b. 6, n ID: A 3 n2 4 ; n 6, n 3 n2 3 c. d. n2 4 ; n 6, n 3 n2 3 (n 2 4) n2 3 ;n 6, n What is the product in simplest form? State any restrictions on the variable. ____ 17. ____ 18. 3g 5 10h 2 h5 10g 2 a. 3g 3 h 3 , g 0, h 0 100 c. b. 100 , g 0, h 0 3g 3 h 3 d. 3g 7 , g 0, h 0 100h 7 3 7 7 g h , g 0, h 0 100 y2 y2 y 6 y3 y 2 1y a. y 2 2y , y 3, 1 y1 c. y2 , y 3, 0, 1 y1 b. y 2 2y , y 3, 0, 1 y1 d. y2 , y 3, 1 y1 What is the quotient in simplified form? State any restrictions on the variable. ____ 19. a2 a1 a 5 a 2 8a 15 (a 2)(a 3) , a 5, 1, 3 a. a1 (a 2)(a 1) , a 5, 3, 1 b. (a 5) 2 (a 3) c. d. (a 2)(a 3) , a 3, 1 a1 (a 2)(a 1) , a 5, 3 (a 5) 2 (a 3) ____ 20. Find the least common multiple of x 2 7x 6 and x 2 3x 4 . a. (x 6)(x 1)(x 4) c. (x 6)(x 4)(x 1) b. (x 1)(x 4)(x 6) d. (x 6)(x 1)(x 4) 6 3 Name: ________________________ ID: A Simplify the sum. ____ 21. ____ 22. 4 5 m 9 m2 81 9 a. (m 9)(m 9) 4m 31 b. (m 9)(m 9) c. d 2 d 30 d 2 14d 48 2 2 d 3d 40 d 2d 48 2 2d 15d 18 a. 2d 2 d 88 d 2 14d 16 b. (d 8)(d 8) c. 2d 2 14d 16 (d 8)(d 8) d. 2d 2 15d 18 (d 8)(d 8) c. n 13 d. n 2 10n 15 n 2 13n 42 d. 9 m m 72 4m 41 (m 9)(m 9) 2 Simplify the difference. ____ 23. n 2 10n 24 9 n 2 13n 42 n 7 n 13 a. n7 b. ____ 24. n4 n7 z 2 11z 30 z 2 2z 24 2 z 2 z 20 z 9z 18 a. z 34 (z 4)(z 3) c. 2z 2 2 (z 4)(z 3) b. 17z 2 (z 4)(z 3) d. 2z 2 8z 34 2z 2 34 c. 4x 3x 10x 3 d. not here Simplify the complex fraction. 4 x3 ____ 25. 1 3 x 12x 4 a. x 2 3x 4x b. 3x 9 7 2 Name: ________________________ ID: A y1 2 ____ 26. y y6 y6 y3 (y 1)(y 6) a. 2 (y 3) (y 2) y1 (y 6)(y 2) b. c. (y 1)(y 6) (y 3)(y 2) d. (y 1)(y 2) (y 6)(y 2) c. c. c. Solve the equation. Check the solution. ____ 27. ____ 28. ____ 29. 4 1 x1 x5 19 a. 4 b. 1 3 a 2 1 a 6 a 6 a 36 a. –9 b. –6 19 3 d. 2 –9 and –6 d. 6 1 73 2 d. 3 or –4 2 6 1 1 x 3 x 9 2 a. 4 b. 2 ____ 30. A group of college students are volunteering for Help the Homeless during their spring break. They are putting the finishing touches on a house they built. Working alone, Kaitlin can paint a certain room in 3 hours. Brianna can paint the same room in 7 hours. Write an equation that can be used to find how long it will take them working together to paint the room. How many hours will it take them to paint the room? If necessary, round your answer to the nearest hundredth. 3 7 3 7 a. 1; 10 hours c. 1; 5 hours x x x x x x x x b. 1; 5 hours d. 1; 2.1 hours 7 3 3 7 8 ID: A Algebra 2 - Chapter 8 Review Answer Section 1. ANS: B PTS: 1 DIF: L2 REF: 8-1 Inverse Variation OBJ: 8-1.1 To recognize and use inverse variation NAT: CC A.CED.2| CC A.CED.4 TOP: 8-1 Problem 1 Identifying Direct and Inverse Variations KEY: inverse variation 2. ANS: C PTS: 1 DIF: L2 REF: 8-1 Inverse Variation OBJ: 8-1.1 To recognize and use inverse variation NAT: CC A.CED.2| CC A.CED.4 TOP: 8-1 Problem 2 Determining an Inverse Variation KEY: inverse variation 3. ANS: D PTS: 1 DIF: L3 REF: 8-1 Inverse Variation OBJ: 8-1.1 To recognize and use inverse variation NAT: CC A.CED.2| CC A.CED.4 TOP: 8-1 Problem 2 Determining an Inverse Variation KEY: inverse variation 4. ANS: D PTS: 1 DIF: L4 REF: 8-1 Inverse Variation OBJ: 8-1.2 To use joint and other variations NAT: CC A.CED.2| CC A.CED.4 TOP: 8-1 Problem 4 Using Combined Variation KEY: inverse variation | combined variation | joint variation 5. ANS: D PTS: 1 DIF: L4 REF: 8-1 Inverse Variation OBJ: 8-1.2 To use joint and other variations NAT: CC A.CED.2| CC A.CED.4 TOP: 8-1 Problem 5 Applying Combined Variation KEY: combined variation | joint variation 6. ANS: C PTS: 1 DIF: L2 REF: 8-2 The Reciprocal Function Family OBJ: 8-2.1 To graph reciprocal functions NAT: CC A.CED.2| CC F.BF.1| CC F.BF.3| G.2.c TOP: 8-2 Problem 1 Graphing an Inverse Variation Function KEY: reciprocal function 7. ANS: C PTS: 1 DIF: L3 REF: 8-2 The Reciprocal Function Family OBJ: 8-2.2 To graph translations of reciprocal functions NAT: CC A.CED.2| CC F.BF.1| CC F.BF.3| G.2.c TOP: 8-2 Problem 3 Graphing a Translation KEY: reciprocal function 8. ANS: C PTS: 1 DIF: L2 REF: 8-2 The Reciprocal Function Family OBJ: 8-2.2 To graph translations of reciprocal functions NAT: CC A.CED.2| CC F.BF.1| CC F.BF.3| G.2.c TOP: 8-2 Problem 4 Writing the Equation of a Transformation KEY: reciprocal function 9. ANS: D PTS: 1 DIF: L3 REF: 8-2 The Reciprocal Function Family OBJ: 8-2.2 To graph translations of reciprocal functions NAT: CC A.CED.2| CC F.BF.1| CC F.BF.3| G.2.c TOP: 8-2 Problem 4 Writing the Equation of a Transformation KEY: reciprocal function 10. ANS: B PTS: 1 DIF: L2 REF: 8-3 Rational Functions and Their Graphs OBJ: 8-3.1 To identify properties of rational functions NAT: CC A.CED.2| CC F.IF.7| CC F.BF.1| CC F.BF.1.b| A.2.h TOP: 8-3 Problem 1 Finding Points of Discontinuity KEY: rational function | point of discontinuity | removable discontinuity | non-removable points of discontinuity 1 ID: A 11. ANS: B PTS: 1 DIF: L2 REF: 8-3 Rational Functions and Their Graphs OBJ: 8-3.1 To identify properties of rational functions NAT: CC A.CED.2| CC F.IF.7| CC F.BF.1| CC F.BF.1.b| A.2.h TOP: 8-3 Problem 1 Finding Points of Discontinuity KEY: rational function | point of discontinuity | removable discontinuity | non-removable points of discontinuity 12. ANS: D PTS: 1 DIF: L2 REF: 8-3 Rational Functions and Their Graphs OBJ: 8-3.1 To identify properties of rational functions NAT: CC A.CED.2| CC F.IF.7| CC F.BF.1| CC F.BF.1.b| A.2.h TOP: 8-3 Problem 2 Finding Vertical Asymptotes KEY: rational function 13. ANS: B PTS: 1 DIF: L3 REF: 8-3 Rational Functions and Their Graphs OBJ: 8-3.1 To identify properties of rational functions NAT: CC A.CED.2| CC F.IF.7| CC F.BF.1| CC F.BF.1.b| A.2.h TOP: 8-3 Problem 3 Finding Horizontal Asymptotes KEY: rational function 14. ANS: B PTS: 1 DIF: L2 REF: 8-3 Rational Functions and Their Graphs OBJ: 8-3.2 To graph rational functions NAT: CC A.CED.2| CC F.IF.7| CC F.BF.1| CC F.BF.1.b| A.2.h TOP: 8-3 Problem 4 Graphing Rational Functions KEY: rational function 15. ANS: B PTS: 1 DIF: L2 REF: 8-4 Rational Expressions OBJ: 8-4.1 To simplify rational expressions NAT: CC A.SSE.1| CC A.SSE.1.a| CC A.SSE.1.b| CC A.SSE.2| A.3.e TOP: 8-4 Problem 1 Simplifying a Rational Expression KEY: rational expression | simplest form 16. ANS: A PTS: 1 DIF: L3 REF: 8-4 Rational Expressions OBJ: 8-4.1 To simplify rational expressions NAT: CC A.SSE.1| CC A.SSE.1.a| CC A.SSE.1.b| CC A.SSE.2| A.3.e TOP: 8-4 Problem 1 Simplifying a Rational Expression KEY: rational expression | simplest form 17. ANS: A PTS: 1 DIF: L2 REF: 8-4 Rational Expressions OBJ: 8-4.2 To multiply and divide rational expressions NAT: CC A.SSE.1| CC A.SSE.1.a| CC A.SSE.1.b| CC A.SSE.2| A.3.e TOP: 8-4 Problem 2 Multiplying Rational Expressions KEY: rational expression | simplest form 18. ANS: B PTS: 1 DIF: L3 REF: 8-4 Rational Expressions OBJ: 8-4.2 To multiply and divide rational expressions NAT: CC A.SSE.1| CC A.SSE.1.a| CC A.SSE.1.b| CC A.SSE.2| A.3.e TOP: 8-4 Problem 2 Multiplying Rational Expressions KEY: rational expression | simplest form 19. ANS: A PTS: 1 DIF: L3 REF: 8-4 Rational Expressions OBJ: 8-4.2 To multiply and divide rational expressions NAT: CC A.SSE.1| CC A.SSE.1.a| CC A.SSE.1.b| CC A.SSE.2| A.3.e TOP: 8-4 Problem 3 Dividing Rational Expressions KEY: rational expression | simplest form 20. ANS: A PTS: 1 DIF: L2 REF: 8-5 Adding and Subtracting Rational Expressions OBJ: 8-5.1 To add and subtract rational expressions NAT: CC A.APR.7| N.5.e| A.3.c| A.3.e TOP: 8-5 Problem 1 Finding the Least Common Multiple 2 ID: A 21. ANS: REF: OBJ: TOP: 22. ANS: REF: OBJ: TOP: 23. ANS: REF: OBJ: TOP: 24. ANS: REF: OBJ: TOP: 25. ANS: REF: OBJ: TOP: 26. ANS: REF: OBJ: TOP: 27. ANS: OBJ: NAT: TOP: 28. ANS: OBJ: NAT: TOP: 29. ANS: OBJ: NAT: TOP: 30. ANS: OBJ: NAT: TOP: B PTS: 1 DIF: L2 8-5 Adding and Subtracting Rational Expressions 8-5.1 To add and subtract rational expressions NAT: CC A.APR.7| N.5.e| A.3.c| A.3.e 8-5 Problem 2 Adding Rational Expressions C PTS: 1 DIF: L3 8-5 Adding and Subtracting Rational Expressions 8-5.1 To add and subtract rational expressions NAT: CC A.APR.7| N.5.e| A.3.c| A.3.e 8-5 Problem 2 Adding Rational Expressions A PTS: 1 DIF: L3 8-5 Adding and Subtracting Rational Expressions 8-5.1 To add and subtract rational expressions NAT: CC A.APR.7| N.5.e| A.3.c| A.3.e 8-5 Problem 3 Subtracting Rational Expressions B PTS: 1 DIF: L4 8-5 Adding and Subtracting Rational Expressions 8-5.1 To add and subtract rational expressions NAT: CC A.APR.7| N.5.e| A.3.c| A.3.e 8-5 Problem 3 Subtracting Rational Expressions C PTS: 1 DIF: L3 8-5 Adding and Subtracting Rational Expressions 8-5.1 To add and subtract rational expressions NAT: CC A.APR.7| N.5.e| A.3.c| A.3.e 8-5 Problem 4 Simplifying a Complex Fraction KEY: complex fraction B PTS: 1 DIF: L3 8-5 Adding and Subtracting Rational Expressions 8-5.1 To add and subtract rational expressions NAT: CC A.APR.7| N.5.e| A.3.c| A.3.e 8-5 Problem 4 Simplifying a Complex Fraction KEY: complex fraction C PTS: 1 DIF: L2 REF: 8-6 Solving Rational Equations 8-6.1 To solve rational equations CC A.APR.6| CC A.APR.7| CC A.CED.1| CC A.REI.2| CC A.REI.11 8-6 Problem 1 Solving a Rational Equation KEY: rational equation A PTS: 1 DIF: L4 REF: 8-6 Solving Rational Equations 8-6.1 To solve rational equations CC A.APR.6| CC A.APR.7| CC A.CED.1| CC A.REI.2| CC A.REI.11 8-6 Problem 1 Solving a Rational Equation KEY: rational equation A PTS: 1 DIF: L3 REF: 8-6 Solving Rational Equations 8-6.1 To solve rational equations CC A.APR.6| CC A.APR.7| CC A.CED.1| CC A.REI.2| CC A.REI.11 8-6 Problem 1 Solving a Rational Equation KEY: rational equation D PTS: 1 DIF: L3 REF: 8-6 Solving Rational Equations 8-6.2 To use rational equations to solve problems CC A.APR.6| CC A.APR.7| CC A.CED.1| CC A.REI.2| CC A.REI.11 8-6 Problem 2 Using Rational Equations KEY: rational equation 3