Download Trigonometric Functions of right triangle 3 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometric Functions of right triangle The Trigonometric Ratios opposite b hypotenuse
a
c
θ adjacent
sin θ =
adj. c
opp. b
= cos θ =
= hyp. a
hyp. a
tan θ =
opp . b
adj . c
= cot θ =
= adj . c
opp. b
sec θ =
hyp. a
hyp. a
= csc θ =
= adj . c
opp. b
Exp: Find the six trigonometric ratios of the angle in the following figure. 3
2 θ sin θ =
tan θ =
sec θ =
5 5
2
cos θ =
3
3
2
5
3
5
cot θ =
csc θ =
5
2
3
2
Note: cot θ =
1
1
1
sec θ =
csc θ =
tan θ
cos θ
sin θ
Special Triangles θ in degrees θ in radiuss sin θ
cos θ
tan θ 30o π
1
2 3
2 3
3 45o π
2
2 1 1 60o π
3
2 2
2 1
2 3
3
3 6 4 3 cot θ
3 sec θ
csc θ
2 3
3 2 2 2 2 2 3
3 Fundamental Identities 1. tan θ =
sin θ
cos 2 θ
2. cot θ =
cos θ
sin θ
3. sin 2 θ + cos 2 θ = 1 4. tan 2 θ + 1 = sec 2 θ 5. 1 + cot 2 θ = csc 2 θ Trigonometric functions of Real numbers Def: Let t be any real number and let P(x, y) be the terminal point on the unit circle determined by θ . We define sin ϑ = y cos θ = x tan θ =
csc θ =
y
( x ≠ 0) x
1
x
1
sec θ = ( x ≠ 0) cot θ = ( y ≠ 0) x
y
y
Even‐odd Properties sin( −t ) = − sin t cos( − t ) = cos t tan( −t ) = − tan t csc( −t ) = − csc t sec( −t ) = sec t cot( − t ) = − cot t Trigonometric Graphs The functions sine and cosine have period 2π:
The functions tangent and cotangent have period π:
The functions cosecant and secant have period 2π:
Addition and Subtraction Formulas (Trigonometric Function) Formulas of sine: sin( s + t ) = sin s cos t + cos s sin t sin( s − t ) = sin s cos t − cos s sin t Formulas of cosine: cos( s + t ) = cos s cos t − sin s sin t cos( s − t ) = cos s cos t + sin s sin t Exp: If f ( x ) = sin x , show that f ( x + h) − f ( x)
cosh − 1
sinh
+ cos x
= sin x
h
h
h
Sol: f ( x + h) − f ( x ) sin( x + h) − sin x sin x cosh + cos x sinh − sin x sin x (cosh − 1) + cos x sinh
=
=
=
h
h
h
h
cosh − 1
sinh
= sin x (
) + cos x
h
h
Exercise: Let g ( x ) = cos x , show that
f ( x + h) − f ( x)
1 − cosh
sinh
= − cos x (
) − sin x (
) h
h
h
Formulas for tangent: tan( s + t ) =
tan s + tan t
1 − tan s tan t
tan( s − t ) =
tan s − tan t
1 + tan s tan t
Double‐Angles Formulas sin 2 x = 2 sin x cos x cos 2 x = cos 2 x − sin 2 x = 1 − 2 sin 2 x = 2 cos 2 x − 1 tan 2 x =
2 tan x
1 − tan 2 x
Formulas for Lowering Powers sin 2 x =
1 − cos 2 x
1 + cos 2 x
2
cos x =
2
2
tan 2 x =
1 − cos 2 x
1 + cos 2 x
Exp: Express sin 2 x cos 2 x in terms of the first power of cosine. Sol: sin 2 x cos 2 x =
1 − cos 2 x 1 + cos 2 x 1
1 1 1 + cos 4 x
1 cos 4 x
)= −
⋅
= (1 − cos 2 2 x ) = − (
2
2
4
4 4
2
8
8
Product‐Sum formulas sin u cos v =
1
[sin( u + v ) + sin( u − v )] 2
cos u cos v =
1
[cos( u + v ) + cos( u − v )] 2
sin u sin v =
1
[cos(u − v) − cos(u + v)] 2
Exp: Express sin 3 x sin 5 x as a sum of trigonometric functions. Sol: sin 3 x sin 5 x =
1
[cos( −2 x ) − cos(8 x )] = 1 (cos 2 x − cos 8 x ) 2
2
Exercise: Use the formulas for lowering powers to rewrite the expression in terms of the first power of cosine. 1. sin 4 x =
3 1
cos 4 x
− cos 2 x +
8 2
8
3 1
cos 4 x
2. cos 4 x = + cos 2 x +
8 2
8
Exercise: Write the product as a sum 1. sin 2 x cos 3 x =
1
1
(sin 5 x + sin( − x )) = (sin 5 x − sin x ) 2
2
2. cos 5 x cos 3 x =
1
(cos 8 x + cos 2 x ) 2
One‐to‐One Functions Def: A function with domain A is called a one‐to‐one function if no two elements of A have the same image, that is, f ( x1 ) ≠ f ( x 2 ) whenever x1 ≠ x 2 . Horizontal Line Test A function is one‐to‐one if and only if no horizontal line intersects its graph more than once. The inverse of a Function Def: Let f be a one‐to‐one function with domain A and range B. Then its inverse function f −1 has domain B and range A and is defined by f −1 ( y ) = x ⇔ f ( x) = y for any y ← B . −1
Note: f ( x) ≠
1
1
= ( f ( x)) −1 f ( x)
f ( x)
Exp: If f (1) = 5 , f (3) = 7 and f (8) = − 10 , find f
Sol: f
−1
(5) = 1, f
−1
(7) = 3, f
−1
−1
(5), f
−1
(7), f
−1
(−10). (−10) = 8 . Inverse function Property Let f be a one‐to‐one function with domain A and range B. The inverse function f
−1
satisfies f −1 ( f ( x)) = x
f ( f −1 ( x)) = x
∀x ∈ A ∀x ∈ B How to find the Inverse function 1. Write y = f (x) . 2. Solves this equation for x in terms of y (if possible) 3. Interchange x and y. The resulting equation is y = f
Exp: Find the inverse of the function f ( x) = 3x − 2 Sol: 1st. y = 3x − 2 2nd. 3x = y + 2 x =
3rd. y =
Ans: f
−1
x+2
3
( x) =
x+2
3 y+2
3
−1
( x) Exp: Let f ( x ) = x − 2 . Find f
Sol: 1st. y = x − 2
−1
( x) y ≥0 2nd. y 2 = x − 2 x = 2 + y 2 3rd. y = 2 + x 2 x ≥ 0 Thus, f −1 ( x) = x 2 + 2
x ≥ 0 Exercise: Find the inverse function of f. 1. f ( x) = 2 x + 1 Sol : f −1 ( x) =
2. f ( x ) =
1
Sol : f
x+2 3. f ( x) = 4 − x 2
−1
x −1
2 ( x) =
1 − 2x
( x ≠ −2 ) x
x ≥ 0 Sol : f
−1
( x) = 4 − x Inverse Trigonometric Functions The inverse sine function is the function sin −1 with domain [− 1,1] and range ⎡ π π⎤
−1
⎢− 2 , 2 ⎥ defined by sin x = y ⇔ sin y = x . ⎦
⎣
The inverse sine function is also called arcsine, denoted by arcsin. The inverse cosine function is the function cos −1 with domain [− 1,1] and range [0, π ] defined by cos −1 x = y ⇔ cos y = x . The inverse cosine function is called arccosine, denoted by arcos. π
1 π
1
Exp: (1) sin −1 ( ) = sin −1 (− ) = − 2
6
2
6
(2) cos −1 (
3 π
π
) = cos −1 0 = 2
6
2
The inverse tangent function is the function tan −1 with domain R and range ⎡ π π⎤
−1
⎢− 2 , 2 ⎥ defined by tan x = y ⇔ tan y = x . ⎦
⎣
The inverse tangent function is also called arctangent, denoted by arctan. Exp: tan −1 1 =
π
π
tan −1 3 = 4
3
Exercise: (1) cos −1
1 π
= 2 3
3 π
= 2
3
−1
(3) tan 0 = 0 (2) sin −1
Related documents