Download Consecutive Integer Squares

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Consecutive Integer Squares
11October2016
StephenMorris,Newbury,Berkshire,UK
[email protected]
FromStanWagon’sProblemoftheWeek1229
ProblemStatement:
For which positive integers n is there a sum of n consecutive integers that is a perfect square?
Solution:
Anaturalapproachistocalculatesuchasumasanexplicitformula.Howeverweprefertoreframe
theproblemasoneaboutrectanglesandintegertripleswhichavoidstheneedformuchalgebra.
Wewilluseonenoteofgeometryandsomesimplelogicasourmaintools.
ThecompletegeneralsolutionisgivenbelowasTheorem1.Theproofwillcomesimplyfromour
approachtowardstheend.
Theorem1:Anygivenpositiveintegernfactorisesuniquelyas2fg2hwhereg,hareoddandhis
squarefree.Thegeneralsolutionforsequencesofconsecutiveintegersoflengthnthatsumtoa
perfectsquareisgivenby:
hr2–(n-1)/2..hr2+(n-1)/2
(hr2–(n-1))/2..(hr2+(n-1))/2
Non-existent
foranyintegerr,
whenf=0
foranyoddintegerr, whenfodd
whenf>0even
Considerarectanglewithwidthintegera,andheightintegerb>a.Therectangleissuchthatitcan
besplitintoidenticalhalvesusingasteppedlinecomposedofedgesoftheunitsquares.
Thecentreoftherectangleisacentreofrotationforthesteppedline,andsoisinthemiddleofan
edgeofaunitsquare.Ifthisisahorizontaledge(asshown)thenaisoddandbeven.Ifitisvertical
thenaisevenandbodd.Socertainlyaandbhavedifferentparity.
Eachhalfrepresentsasequenceofconsecutivenumbers.Iftheareais2c2thenitisoursolutionto
theoriginalproblemforn=a.
Lessobviousisthatitisalsoasolutionforn=b,ifweallowthesequencetocontainzeroand
negativeintegers.Weillustratethiswithanexample:
Inthesecondcase,ontherightofthediagram,theareaabovetherectangleisequaltothearea
below.Sincetheformercontributesapositiveamounttothesumandthelattercontributesa
negativeamounttheycancelout.Sothesumofthesequenceishalfoftheareaoftherectangle.
Anysequenceofconsecutiveintegerswillgeneratesucharectangle.
Withthisobservationwemayreframetheproblemasfollows.
Wesaythatatripleofpositiveintegers,(a,b,c),isasolutionifitsatisfiesthefollowingconditions:
1. aisodd
2. biseven
3. ab=2c2
Notethatwehaveremovedtheconditionthatb>a.
Weusethetermsolutionsinceitrepresentssolutionstotheoriginalproblemforn=aandn=b.
Theexampleaboveisthesolution(3,6,3)andsorepresentsasolutiontotheoriginalproblemfor
n=3andn=6.
OurnextresultsareputintheformofaLemma.
Lemma1:
i.
ii.
iii.
iv.
v.
(a,2a,a)isasolutionforanyoddpositiveintegera.
If(a,b,c)isasolutionthen
a. (a,r2b,rc)isasolutionforanyintegerr,
b. (r2a,b,rc)isasolutionforanyoddintegerr.
Inanysolutionbisdivisibleby2anoddnumberoftimes.
Thereisasolutionfornpreciselywheneithernisoddornisdivisibleby2anoddnumberof
times.
Ifthereisasolutionfornthenthereisasolutionwheretheconsecutiveintegersarepositive.
ProofofLemma1:
i.andii.aresimpletocheckagainsttheconditionsforasolution.
iii.followsfromcondition3,thatab=2c2.WeconsiderthattheRHSisdivisibleby2anoddnumber
oftimesandthataisodd.
Foriv:Ifnisoddweusei.Ifniseventhenweusei.andii.a.withrapowerof2.Thesituation
wherenisdivisibleby2anevennumberoftimesisexcludedbyiii.
Forv.weuseii.togetarectanglewithntheshortestside.
Lemma1.ivsolvesthestatedproblem.Lemma1.vshowsthatweonlyneedconsiderpositive
integers.
Theabovedemonstrateswhenasolutionexistsforn.Wewishtocalculatethesequences
generatedby(a,b,c).Therearetwosuchsequences,forn=aandn=b.
Letsbethefirstnumberinasequenceandtbethelastnumberinthesequencesothatthe
sequenceiss..t.
Firsttakethatcasewheren=a.Wehavethefollowingequationstosolve.
t–s=a–1
sincethelengthofthesequenceisn=a
t+s=b
bytheconstructionoftherectangle
fromwhich
t=(b+a–1)/2
s=(b–a+1)/2
Intheothercasewheren=bthenwemustswitchthevaluesaandbtoget
t=(a+b–1)/2
s=(a–b+1)/2
Notethattisthesameinbothcases.Thedifferenceinsisexplainedbyobservingthatweadd
equivalentnegativeandpositiveintegers,pluszero,tothestartofthesequence.
Applyingthistoourexample(3,6,3)wegett=(6+3-1)/2=4.Forn=3wegets=(6-3+1)/2=2.For
n=6wegets=(3-6+1)/2=-1.Sothesequencesare:
2+3+4=9
-1+0+1+2+3+4=9
AWorkedExample
Toshowthatthisisaconstructivesolutionletusconsideraworkedexample.
Question:Canwefindasequenceof40consecutivepositiveintegerssuchthatthesumisaperfect
square?
Answer:
40is235,sowestartbyusingLemma1.itoget(5,10,5).
NextweuseLemma1.ii.atoget(5,40,10).
Aswewantapositivesolutionwemusthave40thesmallestofaandb,soweuseLemma1.ii.bto
get(45,40,30).
Usingourformulaeforsandtwefindthesequenceis(45-40+1)/2..(45+40-1)/2whichis3..42.
Weshouldcheckthatthesumis302.
!"
!"
𝑖=
!!!
=
!
𝑖
𝑖 −
!!!
!!!
42 42 + 1
2 2+1
−
2
2
= 903 − 3
= 30! TheGeneralSolution
Anypositiveintegernwithasolutioncanbefactoriseduniquelyasn=2fg2hwherefiszeroorodd,g
andhareoddandhissquare-free.
Firstweconsiderthecasewherenisodd,whichoccurswhenf=0andson=g2h.
Firstwefindthegeneralsolutionintermsoftriples.Atriplerepresentingasolutionmusthavea=n
=g2h,sincenisodd.Thenbmustbedivisibleby2htosatisfyab=2c2.Thatgivesthegeneral
solution(g2h,2r2h,rgh)foranyintegerr.
Thesequenceisgivenby
s=(b–a+1)/2=(2r2h-g2h+1)/2=hr2–(n-1)/2
t=(b+a-1)/2=(2r2h+g2h-1)/2=hr2+(n-1)/2
Sothesequenceis
hr2–(n-1)/2..hr2+(n-1)/2
Intheothercaseniseven,whichoccurswhenf>0.FromtheLemma1weknowthatfmustbeodd.
Againwefindthegeneralsolutionintermsoftriples.Atriplerepresentingasolutionmusthaveb=
n=2fg2h,sinceniseven.Thenamustbedivisiblebyhtosatisfyab=2c2.Wehavethegeneral
solution(r2h,2fg2h,2(f-1)/2rgh)foranyoddintegerr.
Thesequenceisgivenby
s=(a-b+1)/2=(r2h–2fg2h+1)/2=(hr2–(n-1))/2
t=(a+b-1)/2=(r2h+2fg2h-1)/2=(hr2+(n-1))/2
Sothesequenceis
(hr2–(n-1))/2..(hr2+(n-1))/2
ThisprovesTheorem1whichwerestatehereforconvenience.
Theorem1:Anygivenpositiveintegernfactorisesuniquelyas2fg2hwhereg,hareoddandhis
squarefree.Thegeneralsolutionforsequencesofconsecutiveintegersoflengthnthatsumtoa
perfectsquareisgivenby:
hr2–(n-1)/2..hr2+(n-1)/2
(hr2–(n-1))/2..(hr2+(n-1))/2
Non-existent
foranyintegerr,
whenf=0
foranyoddintegerr, whenfodd
whenf>0even
ATableofSolutionsforsmalln
UsingtheformulaeinTheorem1wecanwriteatableofpossiblesolutionsforeachn.
n
1
2
3
4
f
0
1
0
2
g
1
1
1
1
h
1
1
3
1
From
r2
(r2-1)/2
3r2-1
To
r 2
(r2+1)/2
3r2+1
SqrtSum
r
r
3r
5
6
7
8
9
10
11
12
0
1
0
3
0
1
0
2
1
1
1
1
3
1
1
1
5
3
7
1
1
5
11
3
5r2-2
(3r2-5)/2
7r2-3
(r2-7)/2
r2-4
(5r2-7)/2
11r2-5
5r2+2
(3r2+5)/2
7r2+3
(r2+7)/2
r2+4
(5r2+7)/2
11r2+5
5r
3r
7r
2r
3r
5r
11r
13
14
15
16
0
1
0
4
1
1
1
1
13
7
15
1
13r2-6
(7r2-13)/2
15r2-7
13r2+6
(7r2+13)/2
15r2+7
13r
7r
15r
17
18
0
1
1
3
17
1
17r2-8
(r2-17)/2
17r2+8
(r2+17)/2
17r
3r
ris…
Odd
None
Exist
Odd
Odd
Odd
None
Exist
Odd
None
Exist
Odd
19
20
0
2
1
1
19
5
19r2-9
19r2+9
21
22
0
1
1
1
21
11
21r2+10
21r
(11r2+21)/2 11r
23
24
25
26
0
3
0
1
1
1
5
1
23
3
1
13
23r2+11
(3r2+23)/2
r2+12
(13r2+25)/2
23r
6r
5r
13r
Odd
Odd
27
28
0
2
3
1
3
7
21r2-10
(11r221)/2
23r2-11
(3r2-23)/2
r2-12
(13r225)/2
3r2-13
None
Exist
Odd
3r2+13
9r
29
30
0
1
1
1
29
15
29r2+14
29r
2
(15r +29)/2 15r
31
32
33
34
0
5
0
1
1
1
1
1
31
1
33
17
29r2-14
(15r229)/2
31r2-15
(r2-31)/2
33r2-16
(17r233)/2
None
Exist
Odd
31r2+15
(r2+31)/2
33r2+16
(17r2+33)/2
Odd
Odd
19r
31r
4r
33r
17r