Download For the function f graphed in the accompanying figure, find 1) (a) 1 (b

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
King Fahd University of Petroleum and Minerals
College of Sciences
MATH 101 Calculus I
Department of Mathematical Sciences
Instructor: Dr. Faisal Fairag
EXAM (1) FORM B
For the function f graphed in the
accompanying figure, find
1) lim f ( x ) = (see figure)
x →1
(Ex 1, pg 165)
2) lim f ( x ) = (see figure)
3) lim f ( x ) = (see figure)
(a) 1
(b) -1
(c) 3
(d) -3
(e) does not exist
4) lim f ( x ) = (see figure)
(Ex 1, pg 165)
(Ex 1, pg 165)
(Ex 1, pg 165)
(a) 1
(b) -1
(c) 3
(d) -3
(e) does not exist
5) lim f ( x ) = (see figure)
(a) 1
(b) -1
(c) 2
(d) -2
(e) does not exist
6) lim f ( x ) = (see figure)
1
-1
4
-4
does not exist
7) lim+ f ( x ) = (see figure)
(Ex 1, pg 165)
(Ex 1, pg 165)
(Ex 1, pg 165)
(a) 1
(b) -1
(c) 3
(d) 0
(e) does not exist
8) lim f ( x ) = (see figure)
(a) 1
(b) -1
(c) 3
(d) -3
(e) does not exist
9) lim− f ( x ) = (see figure)
(Ex 1, pg 165)
(Ex 1, pg 165)
x →3
x →−∞
x →0
(a) 1
(b) -1
(c) 2
1
(d)
2
(e) does not exist
x −9
10) Find lim
= (Ex29, pg130)
x →9
x −3
(f) 3
(g) -3
(h) 6
(i) -6
(j) does not exist
x →2
x →+∞
x →4
x →3
(a)
(b)
(c)
(d)
(e)
1
-1
3
0
does not exist
x →3
(a)
(b)
(c)
(d)
(e)
1
-1
2
-2
does not exist
11) Find lim−
x →2
(a)
(b)
(c)
(d)
(e)
0
2
-2
+∞
−∞
x
= (Ex19, pg130)
x −4
2
12) Find lim−
x →4
(Ex25, pg130)
(a)
(b)
(c)
(d)
(e)
4
8
-8
+∞
−∞
3−x
=
x − 2x − 8
2
x−2
=
x →−∞ x + 2 x + 1
13) Find lim
2
(Ex15, pg136)
(a)
(b)
(c)
(d)
(e)
0
-2
2
+∞
−∞
16) Find lim
x →−∞
(Ex23, pg137)
x2 + 6x + 5
=
x →−1 x 2 − 3x − 4
14) Find lim
15) Find lim
(Ex11, pg130)
(Ex17, pg136)
−
3
(a)
8
(b) 3
(c) 8
(d) + ∞
(e) − ∞
19) Find the values of x (if any)
at which f is not continuous.
x−4
f (x ) = 2
(Ex17, pg157)
x − 16
(a) x= 0, 4
(b) x= 0, -4
(c) x= 0, 4, -4
(d) x= 4, -4
(e) x= 0
4
5
2− y
7 + 6y2
=
1
+∞
−∞
20) Given lim (7x + 5) = − 2, ε = 0.01
x →− 1
find a number δ such that
f ( x) − L < ε if 0 < x − a < δ
(Ex11, pg145)
(a) δ =
(e) δ
x−2
, which statement is true (Ex29(a), pg157)
x −2
f has removable discontinuity at x = ±2
f has removable discontinuity at x=2 and a not removable
discontinuity at x=-2
f has removable discontinuity at x=2 and a continuity at x=-2
lim f ( x ) = 0
22) Let f ( x ) =
x →+2
(e) lim f ( x ) = 1
x →−2
18) Find lim ( x 2 + 3 − x ) =
x →+∞
(Ex31, pg137)
0
3
-3
1
7
1
6
(b) δ
5
2
-5
+∞
−∞
(Ex21, pg137)
1
400
1
=
500
1
=
550
1
=
600
1
=
700
2 + 3x − 5 x 2
=
1 + 8x 2
5
2
−3
y → −∞
(d) δ
(c)
(d)
−
17) Find lim
(c) δ
(a)
(b)
x →+∞
5
4
0
+∞
−∞
3x4 + x
=
x2 −8
3
(a) + ∞
(b) − ∞
21) Find the values of x (if any)
at which f is not continuous.
x
f (x ) =
(Ex19, pg157)
x −3
(a) x= 0, 3
(b) x= 0, -3
(c) x= 0, 3, -3
(d) x= 3, -3
(e) x= 0
23) Let f ( x ) =
x
x
, which
statement is true (Ex29(c), pg157)
(a) f has a removable
discontinuity at x=0
(b) f(0)= 1
(c) lim f ( x ) = 1
x →0
(d) f is continuous at x=0
(e) f is discontinuous at x=0
King Fahd University of Petroleum and Minerals
College of Sciences
MATH 101 Calculus I
EXAM (1) FORM B
ID #
Name:
k 2 x + 1

24) f ( x ) = k + 1
3kx − 1

Department of Mathematical Sciences
Instructor: Dr. Faisal Fairag
x>1
x =1
x <1
(a) Find the values of k so that the function f has a removable discontinuity at x=1
(SHOW ALL YOUR WORK)
(b) Find the values of k so that the function f is continuous from the left at x=1
(SHOW ALL YOUR WORK)
Sec # (11) (28)
25) State the intermediate value theorem.
Multiple Choice Answers
(Fill the Correct Circle)
FORM B
1
2
3
4
x 4 + x 2 + 3x
(SHOW ALL YOUR WORK)
x →−∞
x +1
26) Find lim
5
6
7
8
9
10
11
12
13
14
15
16
17
18
27) Find lim
h→ 0
2+h −2
h
19
(SHOW ALL YOUR WORK)
20
21
22
23
a
b
c
d
e
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Question
MCQ
24 (a)
24 (b)
25
26
27
Mark
Related documents