Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CYL 120 (INORGANIC) Prof. A. K. Ganguli AKG Organic : Prof Nalin Pant Minor I & II 1+7 J D Singh AKG 2 (all lectures till from September 19 to October 17, 2012) MS-709 , TEL : 1511; email : [email protected] October 18 to Nov 16 : Prof J D Singh Quiz ( october) Major Exam : AKG & JDS (inorganic) A K Ganguli (ashok@chemistry ([email protected]), iitd ac in) MS MS-709 709, Tel :1511 1. Transition metal complexes – REVISION of Nomenclature, Isomerism and valence bond theory 1 2. CRYSTAL FIELD Theory 7 Magnetic / optical properties of complexes Structural distortion in metal complexes 3. Introduction to Inorganic Solids 2 Books Recommended 1 James 1. J E E. H HuHeey H Inorganic chemistry 2 F. 2. FA A. Cotton Cotton, G G. Willkinsion and P. P L. L Gaus Basic Inorganic Chemistry, J. Wiley and sons (1995) – Singapore 3. Shriver and Atkins : Inorganic Chemistry ( my part) Quiz (10 marks; 30 min) Major (20 marks; 1 hr) Why Study Inorganic Chemistry?? Intellectual Pursuit Practical Impact 1. Eight out top ten chemicals are Inorganic. (H2SO4) max tonnage 2. Inorganic Materials (Semi conductors, Light guides on linear optical materials, super conductors) d t ) G GaAs, A KT KTaO3, O3 LiNbO3, LiNbO3 YBa2Cu3O7 YB 2C 3O7 Dupont, Monsanto, Dow Chemicals, Hercules, Baeyer, Unilever – Top p Chemical Companies p ATOMIC ORBITALS p s d f Hψ ψ =Eψ S h di Schrodinger,s equation ti Ψ = R(r) Θ(θ, φ) n = 1, 2, 3, ………. l = 0 to n-1 Quantum numbers For n = 1, l = 0 1s sub shell For n = 2, l = 0, 1 l=0 2s sub shell l=1 2p sub shell Ml = -ll tto +l +l. example Y−11(θ,Ԅ)=(1/2)(√3/√2π)(sinθ)e−iԄ. Ml =-1, l = 1 Transition Metal Complexes Transition Metal? Elements having partial filled ‘d’ or ‘f’ shell in any of their commonly occurring oxidation states. Fe, Co, Ni, Cu, Ag, Au etc d - block transition metals. f -block block (inner) transition metals (Lanthanides and actinides) Metals,, variable oxidation states,, hard,, high g melting g point p Transition metal complexes / Coordination Compounds A central atom, ion surrounded by anions or neutral molecules, which are Lewis bases and may be monoatomic or polyatomic, neutral or anionic (ligands) are coordination compounds. Ligand: Lewis base bonded (coordinated) to a metal ion in a coordination compound. L L Lewis acid M L Lewis base Monodentate, bidentate L Coordination compounds p on dissolution give g rise to complex p ions (complexes) [Retains the identity in solution] [Cr(NH3)6]Cl3 Coordination compound [Cr(NH3)6]3+ + 3ClComplex ion How Complexes differ from Double salts?? Double salts on dissolution in water lose their identity Dissolve in water K+, Al3+, SO2- K2SO4.Al2(SO4)3.24H2O (Alum) No complex ion Complex ions don’t lose their identity on dissolution Dissolve in water [Co(NH3)6]Cl3 [Co(NH3)6]3+ + 3ClComplex ion S. M. Jorgensen (1837 – 1914) A. Werner (1866 - 1919) Synthesized y manyy transition metal complexes 1st Nobel prize in Inorganic chemistry (1913) : Werner CoCl3 – NH3 Complexes compound Colour Moles of AgCl Werner’s formula CoCl3. 6NH3 Yellow 3 [Co(NH3)6]Cl3 CoCl3. 5NH3 Purple 2 [Co(NH3)5Cl]Cl2 CoCl3. 4NH3 Green 1 [Co(NH3)4Cl2]Cl W Werner’s ’ main i Study St d Primary Valencies [Co(NH3)6]Cl3 + 3AgNO3 3AgCl + Co(NH3)63+ Secondary Valencies Normally fixed for a particular ion and oxidation state. [Mn(H2O)6]SO4 2+ H2O H2O H2O Mn Electrostatic interaction SO42- H2O Covalent bond H2O H2O Octahedral complex Coordination number is 6 (secondary valency) Mn2+ Central metal ion (lewis acid) H2O Ligand (Lewis base) Types of Ligands M Monodentate d t t ligands li d Donate one pair of electrons to a central metal ion. e g Cl-, Br-, I-, NH3, H2O e.g. Bidentate ligands They have two donor atoms Ethylenediamine (en) H2N – CH2 – CH2 – NH2 M Di th l glycol Dimethyl l l (glyme) ( l ) CH3O – CH2 – CH2 – OCH3 M COOM Oxalate ion (oxalato) COO- More Examples NH2 – CH2 – COO- Glycinato (gly) -OOC bidentate – CH2 – NH – CH2 – COO- Iminodiacetato (imda) tridentate NH2 – CH2 – CH2 – NH – CH2 Triethylenetetramine (tren) NH2 – CH2 – CH2 – NH – CH2 tetradentate -OOC Ethylenediamine tetraacetate (edta) – CH2 CH2 – COON – CH2 – CH2 - N -OOC – CH2 hexadentate CH2 – COO- Ambidentate Ligands O O–N=O N O nitrito Nitro SCN- thiocyanato NCS isothiocyanato Organic Ligands N N 2, 2’-Bipyridine (bpy) N N 1,10 – Phenanthroline (phen) Alkyl groups as ligands CH3 (methyl), CH3CH2 (ethyl), C6H5 (Phenyl) Macrocyclic ligands N N N N Porphyrin tetradentate Nomenclature of Transition metal Compounds A. Writing the name of the complex compound 1 Designation of ligands 1. (a) Anionic ligands end with ‘o’ NO2nitro, CNClchloro, NO3- cyano nitrato (b) Organic ligands retained their names Pyridine (py) or ethylenediamine (en) alkyl groups: methyl, phenyl (c ) Special names H2O (aqua), NO (nitrosyl), CO (carbonyl), NH3 (ammine) 2. Designation of metal (a) Cationic and neutral complexes end in the english name followed by the oxidation state of the metal in brackets. e.g. nickel(II) or iron(II). (b) Anionic complexes have the latin name of the metal ferrate( ) , Stannate ( ) C Cuprate t (), A Argentate t t () 3. Numerical prefixes (a) For two similar ligands di or bis (b) three similar ligands tri or tris (c ) four similar ligands tetra or tetrakis etc. 3. Order of listing The ligands are to be written in alphabetical order (irrespective of charge) eg [CoCl2(NH4)]+ Cleg. dichlorotetraamminecobalt(III) chloride. wrong tetraamminedichlorocobalt(III) chloride. right A. Writing the formulae of the complex compound 1. First central metal atom , then anionic ligands and then neutral ligands (Cl-,NH NH3) [Co (NH3)4Cl2]Cl wrong [CoCl2(NH3)4]Cl correct Examples 1. [Co (NO2)6] Cl3 hexanitro cobalt (III) chloride 2. [Cu(NH3)4]SO4 tetra amminecopper(II)sulphate 3. [CuCl2(py)2] bis pyrridinedichlorocopper(II) py pp ( ) dichloro dipyridine copper (II) dichloro bis (py (pyridine)) copper pp ((II)) 4. cis-[Pt(NH3)2Cl2] cis-diamminedichloroplatinum(II) Geometry of complexes C Cu (linear) Coordination No.2 [NC---Ag---CN] [C (CN)2 [Cu(CN) CH3----Hg-----CH3 CN ]- CN Cu Cu Polymeric compound Coordination no. 4 (large ligands) (b) Tetra hedral (a) Square planar Mainly d8 systems Cl 2- Cl Cl Pt Cl 2- Ni Cl Cl Cl Cl Coordination no. 5 L L L L L M L L L M L tbp Sq. pyramidal L [Ni (CN)5]2- shows both structures (little energy differenc) [CuCl5]3+ NbCl5 TBP structure TBP structure O2 Fe Bi l i ll important Biologically i t t molecules l l Haemoglobin, Oxomyoglobin N N N N L Coordination no. 6 ML6 octahedral complex M t important Most i t t from f d1 to t d9 L L M L L e. g. [Cr(NH3)6]3+ , [Fe(CN)6]3- L Higher coordination possible with large cations and small anions e.g. [ZrF7]3-, TaCl4(PR3)3 [Nd(OH2)9]3+, [ReH9]2-, [Ce(NO3)6]2- Square q antiprism p icosahedron Isomerism Structural Isomerism Stereoisomerism Geometrical (Same frame work b t different but diff t spatial ti l arrangement of the ligands) Optical (non-superimposable i images) i ) mirror Ionization Hydrate y Coordination Linkage Pol meri ation Polymerization Ligand isomer Geometrical Isomers (coordination no. 4) A B A B A M M M B A A B B B A trans cis tetrahedral Square planar All are optically inactive Cis/ trans isomers can be isolated Pt 2- Cl Cl NH3 Pt Cl Cl Cl NH3 E Excess NH3 NH3 Cl I NH3 NH3 Pt NH3 NH3 II Geometrical Isomerism in Octahedral complexes MA3B3 A A B A Facial A RuCl3(H2O)3 B MA2B4 B B B B M B B B Meridonal A A M cis B Co(NO ( 2)3((NH3)3 B A A A M B M B e.g. [Co Cl2(NH3)4] + trans B A Optical isomerism Optical isomers differ only in the direction in which they rotate the plane of the plane polarized light (enantiomers). -- -- ---- - α solution plane polarized light Absence of optical activity (superimposable mirror images) 1. Presence of a mirror plane. 1 plane 2. Presence of a centre of symmetry. Cl NH3 Cl NH3 NH3 M NH3 NH3 Cl Trans + dextro - laevo Cl M [CoCl2(NH3)4]+ Optically inactive NH3 NH3 NH3 Cis NH2 Cl Cl Co Cl Co NH2 NH2 NH2 NH2 NH2 cis NH2 Non superimposable mirror images. Cl NH2 NH2 (Optically active) trans Co Not optically active NH2 NH2 Cl Cl NH2 N Bonding Concept (Rationalise structure) Bonding in coordination compounds Sidgwick (1927) ¾ Extended the Lewis theory ¾ Sharing of ‘e’ pair donated by an atom (donor). Effective atomic Number (EAN) M accepts electron pairs and converted into inert gas configuration. e.g. [Co(NO2)6]3- Co (Z = 27) Co3+ = 24e 6(NO2)- = 6*2e = 12e ---------------------- TOTAL = 36e Atomic no. of Krypton (Kr) Chemical Bonding G N. G. N Lewis L i (1916) Sharing of e-’s Bonding between atoms H H C .. H H H Structure ?? N H H Lewis diagram C Concept t off h hybridization b idi ti Valence bond Theory (Pauling – Slater, 1930’s) Li Linus Pauling P li – N.L. N L (t (twice) i ) “ Nature of the chemical bond” Bond angles ?? Valence bond Theory (Pauling) Complexes 1. Metal ion must make available a number of orbitals equal to the coordination number for accommodating the electrons from the ligands. 2. Use of the hybrid orbitals by the metal ion. ¾ Maximum & fruitful overlap with ligand orbitals ¾ Directionality Note: Hybrid orbitals are not s, p or d orbitals but have a mixed character. Why Hybridisation? CH4 F Four bonds b d C 11s2 2 2s2 2p 2 2 Promotion of one s electron x 1s2 2s2 2px1 2py1 2py1 Results in three mutually perpendicular bonds. pX H z Hy 90 90 H H x But H 109o 109o C CH4 is Tetrahedral H H H All HCH are equal Successes of V. B. T. 1. Simple structure and Magnetic properties are nicely explained. l i d 2. Accounts for low spin square planer and high tetrahedral complex. 3. Low spin inner – orbital and high spin orbital complexes. Failures [Cu(NH3)4]2+ 1. Cannot predict 4 – coordination ― square planer or tetrahedral VB T 2+ Cu : 3d9 3d [Zn(NH3)4]2+ (planar) (tetrahedral) both to be tetrahedral 4s 4p 3d 4s 4p sp3 dsp2 But by experiments there is no evidence of unpaired e- in orbital: e. s. r spectroscopy 22. VBT does not predict any distortion in the symmetrical complexes. [ideal ― octahedra, tetrahedra] Au Cu(II) Au, Cu(II), Ti(III) complexes are distiorted among many more. more 3 VBT neglects 3. l t th the exited it d states t t off the th complexes. l ―no thermodynamic properties can be predicted 4. It does not explain the colour (spectra) of complexes. 5. Does not explain p the temperature p variation of magnetic g properties of complexes.