Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
File No.25/22/15/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD ANDHRA PRADESH - TELANGANA 2014-2015 PROGRAM M E 4TH - CHAPTER - SOLUTIONS 4. GEOMETRY 1. DE II BC ADE II ABC AD AE 4x 3 8x 7 or DB EC 3x 1 5x 3 or20x 2 15x 12x 9 24x 2 8x 21x 7 or 4x 2 2x 2 0 or2x 2 2x x 1 0 2x x 1 1 x 1 0 x 1 2x 1 0 x 1or 2. 1 2 AOC BOC 1800 [linear pairs] AOC 750 1800 AOC 1800 750 1050 3. a b 1800.......... 1linearpairs 2014 - 2015 0 a b 80 .......... 2 given Adding (1) and (2), we get 2a 1800 80 0 2600 a 2600 1300 2 Subtracting (2) from (1), we get 2b 180 0 800 100 0 4. b 100 500 2 Given AD 8x 9,CD x 3 BE 3x 4,CE x To find value of x that makes, DE II AB : www.eabhyasacademy.com If DE II AB , then by Thales Theorem, we have AD BE DC EC 8x 9 3x 4 x3 x 8x 2 9x 3x 2 9x 4x 12 8x 2 9x 3x 2 13x 12 0 PATHFINDER 1 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD 5x 2 4x 12 0 5x 2 10x 6x 12 0 5x x 2 6 x 2 0 x 2 5x 6 0 x 2or 6 / 5 5. POQ POC COQ 1 1 BOC AOC OP bisects BOC 2 2 1 1 BOC AOC POC BOC 2 2 1 1800 2 6. OQ bisects AOC 1 AOC 2 90 0 COQ = a right angle ( linear pair axiom) InABC,DE II BC (Given) AD AE (By Thales Theorem) BD CE A 3X-2 D 5X-4 E 7X-5 5X-3 B 2014 - 2015 C 3x 2 5x 4 7x 5 5x 3 3x 2 5x 3 7x 5 5x 4 15x 2 19x 6 35x 2 53x 20 35x 2 15x 2 53x 19x 20 6 0 20x 2 34x 14 0 10x 2 17x 7 0 10x 2 10x 7 x 1 0 10x x 1 7 x 1 0 x 110x 7 0 www.eabhyasacademy.com x 1or7 / 10 7. 4and 1800 or 4 1800 1800 360 5 4 36 1440 or PATHFINDER B A O C D 2 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 8. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD In figure AD II EF II BC AE DF EB FC AE DF 2AE FC DF 1 FC 2 1.5 1 FC 3cm FC 2 9. D A E F B C Let lengths of sides 3k,4k 1 .3k.4k 24 2 6k 2 24 24 k2 4 6 k 2 Area Hypotenuse 9k 2 16k 2 9.22 16.22 36 64 100 10 10. let the angle be of measure x. Then complement of x 90 0 x Given, x 3 90 0 x x 2700 3x Its complement 900 67.50 22.50 11. B 1800 A 1800 1180 620 12. B 90 0 620 280 let the angles be x and 9x . Then 2014 - 2015 x 9x 900 10x 900 x 90 The angles are 90 and 810 13. AOB is a straight line, AOC 180 0 3x 2x 1800 5x 1800 x 360 14. Given a b 2 900 b 600 3 Also a b 180 0 (Linear pair) www.eabhyasacademy.com b 600 b 1800 2b 1200 b 600 a 1200 15. Let one angle be =x. Then The other angle = 80% of x PATHFINDER 4x 5 3 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 Given, x 4x 900 5 9x 900 5 900 x 50 0 5 9 The other angle 16. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD POR 3ROQ 4 500 40 0 5 (Given) (Linear pair) POR ROQ 1800 3ROQ ROQ 1800 4ROQ 1800 ROQ 1800 450 4 Now SOQ POR ROQ (Vert. opp. S ) 17. 3 450 1350 Let the smaller angle be x, Then Larger angle 5x 200 Given x 5x 20 0 100 0 6x 1200 x 200 Larger angle 5 200 200 800 18. 5 1 x (Corresponding angles) 5 7 1800 (Linear pair) 2014 - 2015 2 5x x 1800 1800 3 3 1800 3 x 1080 5 5 1080 x 19. a c d 360 0 b ( S round a pt) 360 0 850 2750 20. AFE BFG 600 and BFC BFG FGD 1800 E 60 B F I www.eabhyasacademy.com D G A C FGD 1800 600 1200 1 DGI FGD 600 2 PATHFINDER 4 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 21. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD A B C 180 and A B C 0 A A B C 600 1 300 , 2 300 D FromBDC, 1 2 D 1800 D 1800 600 1200 22. 1 B 2 2 1 C 0 0 0 Let the angle be x 0 , then x 2 180 x or x 3600 2x x 2x 3600 3x 3600 x 23. 3600 1200 3 2x 5x 8x 360 0 or 15x 3600 3600 240 15 x 240 x 24. Perimeter of right-angled isosceles triangle 2 1 or 2.x 2 1 2 1 or 2x 1 hypotenuse 1 25. 2x x x ABC is an equilateral le and AD BC 3 BC AD is the medium AD 2 2014 - 2015 3 2 3 2 BC 2C.D. 4 4 3 2 2 AD 4CD 4 2 AD 3CD2 AD2 26. If the angles are in the ratio 1:2:3 then the angles of the triangle are 300 ,600 and 90 0 . The triangle becomes a right triangle. The sides ratio opposite to the angles 300 ,600 ,900 is BC : AB : AC A www.eabhyasacademy.com AC sin300 : AC sin600 , AC 300 1 3 : :1 2 2 1: 3 : 2 600 B PATHFINDER C 5 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 27. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD Area of equilateral trianlge 1 base altitude 2 1 3a a 2 2 28. 3a 4 Let AB and CD represent the poles Draw BE r to CD. Then AB = 9m and CD = 14m Now, BE = AC = 12m and D DE CD CE 14 AB 14 9 m 5m B E A C BD2 BE2 DE2 2 2 12 5 144 25 169 BD 13m 29. Given ABCD is a rhombus. The diagonals AC = 60 cm, BD = 45 cm Area of rhombus 30. = 1 1 d1 d2 60 45 1350 cm2 2 2 C 180 0 A B A 1800 800 600 400 800 x 200 D InBDC, DBC y x 180 2014 - 2015 y0 0 x0 60 0 x0 C B DBC 30 0 or y 1800 200 300 1300 1. C 180 0 A B A www.eabhyasacademy.com 1800 800 600 400 800 x 200 InBDC, DBC y x 180 D y0 0 x0 B or y 1800 200 300 1300 PATHFINDER x0 60 0 C DBC 30 0 6 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 2. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD In figure l II ED II EC and transversal AB and AE make intercepts AD AE DB EC ButAB 12cm, AC 16cmandEC 4cm AE 16 4 12cm Ratio AE 12 3 EC 4 1 AD 3 AD DB 3 1 DB 1 DB 1 AD 4 12 DB 1 DB 12 DB 3cm 4 AD AB DB 12 3 9cm Let AB and CD represent the poles Ratio 3. Draw BE r to CD. Then AB = 9m and CD = 14m Now, BE = AC = 12m and D DE CD DE 14 AB 14 9 m 5m B E A C BD2 BE2 DE2 2 2 12 5 144 25 169 BD 13m 4. If AD is angle bisector then AB 2 AC 3 5. AB BD AC DC 2014 - 2015 AB : AC 2 : 3 AC : AB 3 : 2 Given, In ABC, AD is the bisector of A and AB = 4cm, AC = 5.2cm and BD = 3cm. In ABC , AD is the bisector of A AB BD AC DC 4 3 4DC 3 5.2 5.2 DC 3 5.2 DC 3.9cm 4 But,BC BD DC 3cm 3.9cm 6.9cm www.eabhyasacademy.com 6. In BAC and CDA ADC BAC = C C CAD ABD BAC II ADC BC CA or AC2 BC.CD 12 3 36 AC 36 6cm AC CD PATHFINDER 7 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 7. 0 0 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD (Linear pair) 0 BAC 180 112 68 In ABC x 1800 680 90 0 1800 1580 220 8. Angle sum property of a triangle) By the angle sum property of a triangle we have R S T 1800 x 5x 50 250 1800 1500 250 6 S 5 250 50 1300 6x 1500 x 9. ABC ACB ACD 1800 ( AB II CD , co - interior angles are supplementary) 750 600 ACD 1800 ACD 1800 1350 450 10. In ABC ext. CBD ACB CAB (exterior angle property of a ) 1350 ACB 550 ACB 1350 550 800 n ACB 800 (Vertically opposite angles) 11. ext. CBY CAB ACB 1140 45.50 ACB 2014 - 2015 ACB 1140 45.50 68.50 Now a ACB 180 0 (Linear pair) a 1800 ACB 1800 68.50 111.50 12. BCA II DCB A.A.axiom BC AC AB DC BC BD B BC2 AC DC 6 27 81 2 BC 81 9 A AB 27 3 3 www.eabhyasacademy.com 13. x y 1800 6 C 27 2 D [linear pair] 450 y 1800 y 1800 450 1350 z x 450 [vertically opposite angles] u y 1350 [vertically opposite angles] y 1350 , z 450 ,u 1350 PATHFINDER 8 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 14. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD G is the centroid of ABC A E F G B C D AG 2 2 2 AD,BG BE and CG CF 3 3 3 AG BG CG 15. 2 AD BE CF 3 Let ABC be a trianlge right angled at B. Let the shortest side AB be x meters. Then, hypotenuse AC 2x 6 m InABC, AC2 AB2 BC2 2 2x 6 x 2 2x 4 2 4x 2 24x 36 x 2 4x 2 16x 16 x 2 8x 20 0 A x 10 x 2 0 x 10, x 2 AB x 10m C +6 2x x 2x+4 B BC 2x 4 2 10 4 24m AC 2x 6 2 10 6 26m 16. Let a man start from O. First, the man goes 18m due east and reaches A. Then, he goes 24m due north reaching B 2014N- 2015 Now,inABO OA 18m, AB 24m, B 2 24m 2 OB2 18 24 324 576 OB2 900 OB 900m OB 30m 17. W o 18m A S E Hence, the man is at a distance of 30m from the starting point Let AB and CD be two poles AB 12m,CD 7m Draw a line CE toBD InAEC, AC2 A 2 www.eabhyasacademy.com 12 12 7 5cm CE2 AE2 2 144 25 169 C AC 13 D PATHFINDER 12cm 7cm 7cm E B 9 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 18. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD 1 Area of triangle base height 2 1 2R R 2 R2 19. 4and 1800 1800 360 or 5 4 36 1440 20. B A or 4 1800 O C If AD is angle bisector then D AB BD AC DC AB 2 AC 3 AB : AC 2 : 3 AC : AB 3 : 2 21. In figure AD EF BC AE DF EB FC AE DF 2AE FC DF 1 FC 2 1.5 1 FC 3cm FC 2 22. F B 2014 - 2015 1 1 BOC AOC OP bisects BOC 2 2 1 1 BOC AOC POC BOC 2 2 www.eabhyasacademy.com E D C POQ POC COQ 1 1800 2 23. A OQ bisects AOC 1 AOC 2 90 0 COQ = a right angle ( linear pair axiom) PQ R II LM N and 3 PQ = LM, MN = 9cm PQ QR 1 QR QR 3cm LM MN 3 9 24. AB 3, AC 5, B 900 BC 4 A BD2 AB,BC 3.4 12 BD 12 PATHFINDER D B C 10 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 25. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD Let one angle of a parallelogram be x 0 Let the other angle of parallelogram be 2x 0 3 Since sum of adjacent angles of a parallelogram is 180 0 So, x 2x 0 5x 180 1800 3 3 x 360 30 1080 The smallest angle of the parallelogram = 26. 2 2 x 108 720 3 3 Let AB = BC = x Given AC 8 2 AB 2 BC2 AC2 2 2x 2 8 2 x 8cm 27. The adjacent angles of a rhombus are supplementary 2x 350 x 5 180 0 3x 1800 300 x 28. 2100 700 3 A B 1800 3x 10 5x 30 180 8x 20 180 8x 160 x 20 2014 - 2015 0 A C 3x 10 500 B D 5x 30 1300 29. x 150 3x 250 180 0 4x 400 1800 4x 1400 x 1400 4 x 350 XOP x 150 350 150 50 0 www.eabhyasacademy.com 30. z 1800 1080 350 150 50 0 But, 4x 5x z ( corresponding angles are equal) 9x z 0 x 720 80 9 q0 5x 0 400 , p0 4x 0 320 ( vertically opposite angles are equal) p q z 320 400 720 1440 PATHFINDER 11 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD BRAIN TWISTERS : 1. x:y=3:7 Total ratio x + y = 10 x y 1800 x y 2. 3. 4. 3 180 54 z 540 10 7 180 126 a 1260 10 1800 (or) supplementary From figure 2x 7 3x 13 1800 MND 1800 3x 13 5x 20 180 0 = 180 - 109 x 320 = 710 From figure, AB AG 2 x x4 BC GF 3 6 BC GF 3 6 y 8 CD FE 4 y : 5. In a parallelogram ABCD, we know that A C and B D A C 1150 and B D 650 or 2014 - 2015 In ABCD A B 1800 1150 B 1800 B 1800 1150 650 C A 1150 , D B 650 6. Exterior angle of a regular polygon = 360 n 360 360 1200 x 10 x 3 3 1 x 10 x www.eabhyasacademy.com 3 10 x 3x x 10 x 30 3x 3x 10x x 2 x 2 10x 30 0 x 5 or 6 PATHFINDER 12 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD Interior angle of a regualr polygon = 180 = 180 360 n 360 6 = 120 7. By intercept theorem ST PQ x 4 x 6 TU QR 9 6 Both A and R are true R is the correct explanation of A. 8. In a parallelogram A, B, C, D. we know that the sum of any two adjacent angles are equall t 180 0 A B 1800 ; A D 1800 ; C D 1800 ; B C 1800 A F 9. G E B C Let G be the point of their intersection. Since BE = CF, we have BG 2 2 BE CF CG BG CG 3 3 Also, GE = BE - BG = CF - CG = GF Now in s BGF and CGE , we have BG = CG GF = GE and BGF CGE BGF CGE [Vertically opposite angles] [By SAS Congruence Asiom] 2014 - 2015 BF CE 1 1 BF 2 AB, CE 2 AC AB AC 10. P is the orthocentre of ABC AD BC , BE CA and CF AB A F B P E D C Now, in PBC , AD BC , PD BC www.eabhyasacademy.com CF AB , BF CP Now altitudes BF and PD of PBC intersect in A. A is the orthocenter of PBC PATHFINDER 13 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD : 0 11. 3x 60 5 3 60 x 1000 = obtuse angle 1) x 30 90 5 5 3 0 5y 200 5 5y 200 y 2400 = reflex angle 2) 20 180 6 5 6 0 5z 3z z z 0 400 8z 40 15 z 750 = acute angle 3) 40 15 3 5 4) 4a 3600 a 900 = right angle 12. a) Th sum of interior angle of polygon = 2n 4 900 b) The sum of exterior angle of polygon = 3600 c) Each interior angle of regular polygon = d) Each exterior angle of regular polygon 13. 2n 4 900 n 3600 n Here G is the centroid of the ABC and it divides each median in the ratio 2 : 1 A F B G E C D a, b) AG 2 AG GD 2 1 AD 1 1 3 GD AD 7.2 2.4 cm GD 1 GD 1 GD 3 3 AG AD GD 7.2 2.4 4.8 cm c, d) 2014 - 2015 CG 2 3.4 2 GF 1.7 CM CF CG GF 3.4 1.7 5.1cm GF 1 GF BG 2 BG GE 2 1 GE 1 GE 1 : 14. A : B 4:5 Sum of the ratio = 4 + 5 = 9 But A B 1800 www.eabhyasacademy.com A 4 1800 800 9 5 B 1800 100 9 C A 800 , D B 1000 A 80 15. B 100 PATHFINDER 14 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 16. 17. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD D C 100 80 200 In ABC , we have CAB ABC 180 0 and ABC 900 320 900 ACB 180 0 ACB 580 18. We know that the diagonals of a rectangle are equal and bisect each other OA OB OBA OBA 320 ABC 900 OBA OBC 90 0 320 OBC 90 0 OBC 580 19. In a right angle triangle the square of hypotenuse is equal to sum of the squares of opposite side and adjacent side i.e., AC2 AB 2 BC2 20. The medians AD, BE and CF pass through G G is the cventroid of ABC . Hence it will drive each median AD, BE and Cf in the ratio 2 A F E G C B Now, BG 2 8 2 GE 4 BE BG GE 8 4 12 GE 1 GE 1 21. GC 2 GC 2 AG 2 AG GC 10 ; 1 2 1 3 FG 1 5 1 GD 1 GD 22. AG GD AD 13.5 3 3 3 GD 4.5 GD GD GD : 2014 - 2015 23. The number of lines of symmetry for a parallelogram is zero. 24. In a rectangle ABCD, AC2 AB 2 BC2 D C cm 10 b A 8 cm B Given AB = 8 cm, AC = 10 cm, BC = b cm b 2 102 82 36 , breadth = 6 cm A F 25. 4 B www.eabhyasacademy.com E G cm D C BG 2 BG GE 2 1 GE 1 GE 1 BE 3 BE 3GE 3 4 12cm GE BG BE GE 12 4 8cm PATHFINDER 15 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD Let ABCD be the IIgm and let A C 1500 ( opp. angles are equal 1. as A C A C 1500 2A 1500 1500 750 2 A A C 750 Now A C 1800 ( adjacent angles aJ’e supplementary) D C A B 75 D 1800 D 1800 75 1050 Now B D 1050 ( Opposite angles are euqal) 2. We have ADB CBD 650 ( alternate interior angles are equal) D 2014 - 2015 C 650 750 A B But in ADB , A ABD ADB 1800 ( sum of three angles of a trianlge is 180 0 ) 750 ABD 650 1800 ABD 1400 180 0 ABD 400 www.eabhyasacademy.com 3. CDB ABD 40 0 ( alternarte interior angles are equal) Let ABCD be the rhombus whose diagonals AC and BD are of lengths of 8 cm and 6 cm respectively. Let AC and BD intersect at O. Since the diagonals of rhombus bisect at right angles. AO 1 1 AC 8 4cm 2 2 and BO 1 1 BD 6 3cm 2 2 In AOB PATHFINDER 16 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD By pythagoras theorem, D C O A B AB 2 OA 2 OB 2 4 2 32 16 9 25 AB = 5 length of each side of the rhombus = 5 cm. 4. Sum of all exterior angles of a regular polygon = 3600 Each exterior angle = 450 Number of exterior angles = 350 8 45 Number of sides in the given polygon = 8. 5. Let the measure of the fourth angle be x 0 We know that the sum of the angles of a quadrilateral is 3600 54 + 80 + 116 + x = 360 250 x 360 x 360 250 110 6. 2014 - 2015 0 0 0 Let the measures of angles of the given quadrilateral be 2x , 3x , 5x and 8x 0 We know that the sum of the angles of a quadrilateral is 3600 2x 3x 5x 8x 360 18x 360 x 20 So, the measures of angles of the given quadrilateral are 0 0 2 20 , 3 20 , 5 20 0 and 8 20 0 i.e., 400 ,600 ,100 0 and 160 0 7. Let the measures of each of the equal angles be x 0 We know that the sum of all the angles of a quadrilateral is 3600 www.eabhyasacademy.com 115 + 45 + x + x = 360 160 2x 360 2x 360 160 200 x 100 Hence, the measure of each of the equal angles is 100 0 PATHFINDER 17 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 8. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD Let the lengths of two sides of the parallelogram be 4x cm and 3x cm respectively. Then, its perimeter = 2(4x + 3x) cm = 14 x cm 9. 56 4 14 14x 56 x one side = (4 x 4) cm = 16 cm and other side = (3 x 4) cm = 12 cm. Let ABCD be the given rectangle in which length aB = 8 cm and diagonal AC = 10 cm D C 10 A cm B 8 cm Since each angle of a rectangle is a right angle, we have ABC 900 From the right ABC , we have AB 2 BC2 AC2 [Pythagoras’ theorem] 2 BC2 AC2 AB2 10 8 10. 2 cm 100 64 cm 36cm 2 2 2 BC 36 cm 6cm Hence, breadth = 6 cm In s AOQ and BOP, we have P O A B Q 2014 - 2015 OAQ OBP (Each equal to 90 0 ) AOQ POB By AA - similarity,, (Vertically opp. s ) AOQ~ BOP AO OQ AQ BO OP BP AO AQ 10 AQ 10 9 AQ 15cm BO BP 6 9 6 A B O D 11. M C www.eabhyasacademy.com N From Similar s ABN and DMN AB AN BN 2 AN DM DN MN 1 DN .... (1) .... (2) From similar s AOB and COM AB AO OB 2 AO OB MC OC OM 1 OC OM PATHFINDER 18 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD Again from similar s AON and BOC AO ON ON 2 ON:OB 2:1 OC OB OB 12. By the converse of basic proportionality theorem if CD CE , then DE II AB DA EB x3 x 8x 9 3x 4 3x 4 x 2 x 8x 9 3x 2 13x 12 8x 2 9x 5x 2 4x 12 0 5x 2 10x 6x 12 0 5x x 2 6 x 2 0 5x 6 x 2 0 x 13. 6 or 2 5 Equilateral triangles are similar trianlges. In similar triangles, the ratio of their corresponding sides is the same as the ratio of their medians. The ratio of the sides is 3 : 2 14. Let the shortest side of the triangle be x m. Then hypotenuse = (2x + 6)m 2014 - 2015 Third side = (2x + 6) - 2 = (2x + 4) m By Pythagora’s Theorem. 2 2x 6 2x 4 2 x2 4x 2 24x 36 4x 2 16x 16 x 2 x 2 8x 20 0 x 2 10x 2x 20 0 x 10 x 2 0 x 10 or 2 x cannot be negative, x = 10 www.eabhyasacademy.com Hypotenuse = (2 x 10 + 6)m = 26 m 15. 3600 Exterior angle = number of sides = PATHFINDER 3600 30 51 7 7 19 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 16. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD Interior angle of a regular polygon of ‘n’ sides = Exterior angle of a regular polygon of ‘n’ sides = Given, n 2 1800 n n 2 8 17. 8 n 2 1800 n 360 0 n 3600 n 3600 16 n 18 1800 Let the angle of the quadrilateral be 3x, 7x, 6x and 4x Then, 3x+7x+6x+4x = 3600 20x 3600 x 180 The angles A, B, C and D are respectively 3 180 , 7 180 , 6 180 and 4 180 , i.e., 540 , 1260 , 1080 and 720 B C 0 126 108 720 540 D A 18. 0 Which shows that A B 1800 and C D 1800 Ad II BC Hence ABCD si a trapezium. Diagonals of a rectangles are equal and bisect each other. 0 In AOB , AOB 162 3x (vert, opp s ) OBA OAB 2x (OA OB ) AOB OBA OAB 180 0 1620 3x 2x 2x 180 0 2014 - 2015 x 180 19. PSR PQR 680 (opp, s of a IIgm are equal) 0 0 PTS 180 139 410 (PTQ is a straight line) RST PTS 410 (SR OO PQ alt. s are equal) 20. 0 0 0 y PSR RST 68 41 27 Opp s of a rhombus are equal 2x 150 3x 300 x 450 In ABCD , CD = CB CBD BDC Also, DCB 3 450 300 1050 1800 1050 750 37.50 2 2 In a kite, the two pairs of adjacent sides are equal, i.e., PS = PQ and sR = RQ In PSQ www.eabhyasacademy.com BDC 21. PSQ PQS PATHFINDER 1800 700 1100 550 2 2 20 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD QSR 90.50 35.50 RQS QSR 35.50 ( RQ = RS) In SRQ , R RQS QSR 1800 R 35.50 35.50 1800 R 1800 710 1090 22. In AOB D C O 480 A B BO = OA (Diagonals of a rectangle are equal and bisects each other) OAB OBA 480 (isos, property) DBA OBA 480 DBC CBA DBA = 900 480 420 23. DAB 1800 ADC 180 0 640 1160 AB II DC, co int, s are supp DAB, DA AB ABD ADB isos. prop In ADB 1800 1160 640 320 2 2 BDC 640 320 320 2014 - 2015 Hence, in DBC 0 DBC 180 BDC BCD = 180 0 320 540 180 0 860 940 24. In BAD BDA BAD 57 0 In BDC BCD BDC 660 D 570 660 1230 and A D 57 0 1230 1800 Also, D C 1230 660 1890 Hence, by the property that co-int, angles are supplementary lines are parallel, we have AB II DC and AD not II BC. i.e., ABCD is a trapezium www.eabhyasacademy.com 25. We have, SPQ 600 S P PATHFINDER A R Q 21 MATHEMATICS-CHAPTERSOLUTIONS File No.25/22/15/12/2014 P Q 1800 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD (adj, s of a IIgm are supp.) Q 1800 600 1200 Now PQ II SR and AP is the transversal SAP APQ 300 ( AP bisects SPQ ) SAP SAP SA SP (isos, property) .... (1) Also, RAQ AQP 600 (PQ II SR, AQ is transvrsal, alt s and AQP 1 PQR 600 ) 2 ROQ RAQ (AQ bisects PQR ) RA = RQ (isos, property .... (2) From equationo (1) and (2) AS = AR ( SP = RQ, sides of a llgm) Also, in ARQ, ARQ 600 ARQ is equilateral AR RQ AR SP The incorrect statement is AQ = PQ NOTE :- Level - I - Question No.4 - Entered the Wrong Answer : Key 3 2014 - 2015 But Correct Answer : Key 2 Levle - II - Entered the Wrong Question No.25 But Correct Question is 25) If an angle of a parallelogram is two - third of its adjacent angle, the smallest angle of the parallelogram is 2) 720 3) 720 4) 1080 www.eabhyasacademy.com 1) 540 PATHFINDER 22 MATHEMATICS-CHAPTERSOLUTIONS